ГИДРОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ТОПЛИВА В УПЛОТНЯЮЩЕМ ПРЕЦИЗИОННОМ СОПРЯЖЕНИИ ПРИ ПОВЫШЕННЫХ ДАВЛЕНИЯХ ВПРЫСКИВАНИЯ С УЧЕТОМ ШЕРОХОВАТОСТИ КОНТАКТНЫХ ПОВЕРХНОСТЕЙ ЭЛЕМЕНТОВ РАСПЫЛИТЕЛЯ

В.Е. Лазарев, А.Е. Попов, Г.В. Ломакин

Гидродинамические параметры в коническом уплотняющем прецизионном сопряжении исследованы с учетом характеристик шероховатости элементов контактного сопряжения. Моделирование гидродинамических процессов в топливных каналах распылителя выполнено с учетом специфических условий работы при высоких (до 300 МПа) давлениях впрыска топлива, которые являются характерными для распылителей форсунок.

Гидродинамические модели созданы базируясь на результатах анализа условий механического нагружения в области контакта уплотняющего прецизионного сопряжения. Основной особенностью гидродинамической модели является учет параметров шероховатости, которые получены моделированием поверхностной топографии иглы и корпуса. Для получения корректной гидродинамической модели толщина топливного слоя выбрана в соответствии с высотами микронеровностей исследуемых поверхностей.

Поточные CFD-модели представлены как элементарные микро-сегменты, которые сформированы поверхностями иглы и корпуса в начале процесса впрыска. Модели созданы с использованием соответствующего математического и инженерного программного обеспечения с пошаговым созданием твердотельных, сеточных и поточных моделей. При этом использованы свойства дизельного топлива, как базовые свойства рабочей жидкости. В ходе вычислений применено изменение толщины моделей для оценки влияния параметров шероховатости на распределение гидродинамических давлений и скоростей потока.

Ключевые слова: распылитель топливной форсунки дизеля, гидродинамические параметры потока топлива, давление впрыскивания топлива.

ВВЕДЕНИЕ

Одним из направлений развития современного двигателестроения является неуклонное повышение (до 240...250 МПа) давлений впрыскивания топлива дизельных систем топливных систем [1, 2, 4]. Увеличение давлений впрыскивания топлива позволяет повысить эффективность рабочего цикла при должной полноте и качестве сгорания топлива, что, в свою очередь, способствует повышению экономичности и снижению токсичности отработавших газов дизеля. Однако, данное обстоятельство приводит к увеличению нагруженности конического уплотняющего сопряжения и требует новых технических решений, направленных на обеспечение его надежной работы.

Целью данного исследования является оценка влияния параметров шероховатости в области конического уплотняющего прецизионного сопряжения на характеристики топливного потока в процессе впрыскивания распылителем топливной форсунки дизеля в условиях его работы при повышенных (до 300 МПа [3, 5, 6]) давлениях.

Коническое уплотняющее прецизионное сопряжение распылителя (рис. 1) характеризуется высоким уровнем тепловой и механической нагруженности, что формирует повышенные требования к технологии изготовления и особенностям эксплуатации распылителя. Кроме того, процессы, вызываемые течением топлива под высоким давлением в гидравлическом тракте распылителя, нередко приводят к возникновению эрозионных и кавитационных явлений. Указанные явления сопровождают процессы истечения топлива под высоким давлением в достаточно узких каналах и полостях и заслуживают отдельного исследования при подъеме иглы распылителя в начале процесса впрыскивания и посадке ее в седпо при его завершении.

Особенностью используемой СFD-модели гидравлического тракта является учет параметров шероховатости поверхностей иглы и корпуса распылителя, таким образом, что боковые образующие поверхности топливного слоя форму, отвечают микрорельефу шероховатости элементов, формирующих топливный поток.

ГИДРОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ТОПЛИВА В УПЛОТНЯЮЩЕМ ПРЕЦИЗИОННОМ СОПРЯЖЕНИИ ПРИ ПОВЫШЕННЫХ ДАВЛЕНИЯХ ВПРЫСКИВАНИЯ С УЧЕТОМ ШЕРОХОВАТОСТИ КОНТАКТНЫХ ПОВЕРХНОСТЕЙ ЭЛЕМЕНТОВ РАСПЫЛИТЕЛЯ

Рисунок 1 – Расположение и форма исследуемого участка топливного слоя в коническом уплотняющем прецизионном сопряжении

Рельеф шероховатой поверхности получен моделированием ее, как совокупности микронеровностей сферической формы. Особенности получения поверхностей с фактическим микрорельефом шероховатости детально рассмотрены в работе [7].

МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ПОТОКА ТОПЛИВА В КОНИЧЕСКОМ УПЛОТНЯЮЩЕМ ПРЕЦИЗИОННОМ СОПРЯЖЕНИИ

Оценка гидродинамических параметров потока топлива в области конического уплотняющего цилиндрического сопряжения распылителя выполнена использованием математического моделирования фрагмента топливного тракта. При этом выполнена подготовка соответствующих моделей, проанализированы и приложены начальные и граничные условия, и решение задачи движения обеспечено относительно распределения гидродинамических давлений и скоростей в потоке топлива в области проходных сечений гидравлического тракта конического уплотняющего прецизионного сопряжения.

Контурные (геометрические) модели топливного тракта, конечно-элементные и расчетные модели сплошной топливной среды, вычисления с использованием численных методов и анализ полученных результатов в комплексе составили реализацию численного решения основных уравнений гидродинамики движения топливной среды в области исследуемого сопряжения.

Создание расчетных моделей, помимо указания начальных параметров в ячейках

расчётной области, предусматривало выбор решаемых уравнений. В данном случае, для получения распределения скорости и давления в исследуемых потоках, использованы уравнение неразрывности и уравнение моментов количества движения. Указанный подход характерен при решении задач гидродинамики, а расчетная модель предусматривает выбор исходных данных во входных и выходных сечениях исследуемого потока – граничных условий.

В соответствии с используемым алгоритмом, для получения корректных результатов расчета выполнен поиск «сходящихся» решений, как наборов параметров, при значениях которых выполняются, решаемые численно, выбранные уравнения движения в потоке жидкости. Проведение анализа осуществлено применительно к каждой расчетной ячейке, а полученные результаты распространены на всю расчетную область.

Полученные результаты представлены в виде полей распределения гидродинамических давлений и скоростей в топливном потоке в области конического уплотняющего прецизионного сопряжения в нижней части распылителя.

В соответствии с используемым подходом к анализу гидродинамических параметров топливного тракта в области исследуемого сопряжения созданы контурные, сеточные и расчетные модели, учитывающие осевое перемещение (подъем) иглы в начале процесса подачи топлива (рис. 2).

Рисунок 2 – Конечно-элементная модель топливного слоя (а) и приложение граничных условий гидродинамического нагружения (б) модели конического уплотняющего прецизионного сопряжения распылителя

Величина подъема иглы при моделировании течения топлива выбиралась дискретно и учитывалась изменением толщины модели от 2 мкм до 28 мкм. Шаг дискретизации выбран равным 2 мкм до величины подъема иглы в 8 мкм, а на участке от 8 мкм до 28 мкм равнялся 4 мкм.

Указанный выбор шага дискретизации объясняется тем, что при малых значениях подъема иглы величина зазора между иглой и корпусом распылителя и, соответственно, толщина топливного слоя соизмерима с высотами микронеровностей шероховатости и их влияние на структуру потока относительно велико. Однако, по мере перемещения (подъема) иглы, совместно с увеличением толщины слоя топлива между иглой и корпусом, влияние параметров шероховатости должно снижаться и гидродинамические параметры потока топлива должны стабилизироваться.

Наиболее популярными и широко используемыми в инженерной среде являются программные пакеты, реализующие численное решение уравнений Навье-Стокса, которые положены в основу анализа всех гидродинамических процессов и, при имеющихся допущениях, имеют удовлетворительное согласование результатов с данными, полученными экспериментально.

Согласно данным, опубликованным в работе [8], в общем случае, для решения задач гидродинамики, требуется решить систему из следующих независимых уравнений:

Учитывая, что в коническом уплотняющем прецизионном сопряжении распылителя, течение жидкой среды в зазоре условно можно рассматривать, как прямолинейное, общая для всех разработанных типов сеточных гидродинамических моделей, математическая модель, представлена следующими уравнениями (1) и (2). Изменение давления рассматривается только вдоль оси, совпадающей с направлением течения топлива

$$\frac{dp}{dx} = \mu \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right), \tag{1}$$

где $\frac{ap}{dx}$ – изменение давления по

направлению течения топлива, Па/м;

µ – динамическая вязкость дизельного топлива, Па⋅с;

 u – осевая составляющая скорости движения жидкой среды, м/с;

r – эквивалентный радиус канала сопряжения, м.

Для полного определения переменных величин уравнений Навье-Стокса обычно дополнительно используют уравнение неразрывности

$$\frac{d\rho}{dt} + \frac{\partial(\rho u)}{\partial x} = 0, \qquad (2)$$

где ρ – плотность дизельного топлива, кг/м3.

Перед проведением расчетных исследований применительно к исследуемым моделям выполнена оценка граничных условий гидродинамического нагружения.

В качестве граничных условий гидродинамического нагружения для моделей фрагмента конического уплотняющего сопряжения использованы значения давлений в полости под дифференциальной площадкой иглы распылителя («входное» сечение модели) и значения расходов при движении топлива в направлении распыливающих отверстий («выходное» сечение модели), обеспечивающих требуемое значение максимальных давлений впрыскивания. При проведении расчетных исследований в условиях варьи-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 2017

ГИДРОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ТОПЛИВА В УПЛОТНЯЮЩЕМ ПРЕЦИЗИОННОМ СОПРЯЖЕНИИ ПРИ ПОВЫШЕННЫХ ДАВЛЕНИЯХ ВПРЫСКИВАНИЯ С УЧЕТОМ ШЕРОХОВАТОСТИ КОНТАКТНЫХ ПОВЕРХНОСТЕЙ ЭЛЕМЕНТОВ РАСПЫЛИТЕЛЯ

рования толщины топливного слоя от 2 мкм до 28 мкм, величины давления и расхода топлива поддерживались постоянными и составляли 300 МПа и 5×10-6 кг/с, соответственно.

Результаты проведенных расчетов представлены в виде распределения полей гидродинамических давлений и скоростей потока топлива в области фрагмента конического уплотняющего прецизионного сопряжения (рис. 3).

Рисунок 3 – Распределение полей гидродинамических давлений (а) и скоростей (б) потока топлива в области конического уплотняющего прецизионного сопряжения при различных значениях подъема иглы распылителя (давление топлива – 300 МПа, расход – 5×10⁻⁶ кг/с)

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 2017

Особенностью используемой модели является учет и интеграция в топливный слой параметров шероховатости контактирующих элементов иглы и корпуса распылителя. Согласно статистическим данным [9, 10], в области уплотняющего пояска конического сопряжения, после процесса приработки, эквивалентная шероховатость соответствует значению R_z = 0,6 мкм. Указанное значение учтено особенностями микрогеометрии боковых образующих поверхностей, имеющих линейные размеры 50 × 50 мкм, и формирующих топливный канал переменной толщины.

В соответствии с полученными результатами, локальные увеличения скорости потока топлива наблюдаются применительно к моделям с минимальными значениями проходных сечений, т.е. соответствующим начальному периоду подачи топлива. Толщины топливных слоев для указанных моделей составляют от 2 мкм до 12 мкм. Одновременно с этим, для моделей, толщиной до 12 мкм (включительно) наблюдаются наивысшие значения перепадов давлений в топливной среде, приводящие к появлению участков выкрашивания и эрозионного изнашивания иглы и корпуса распылителя в данной области сопряжения.

Максимальные значения скорости и перепада давлений в потоке зафиксированы для модели толщиной 2 мкм (величина скорости потока составила 100...105 м/с, разность давлений примерно 14...15 МПа), а минимальные значения скорости и давления в потоке зафиксированы для модели толщиной 28 мкм (величина скорости потока составила 10...13 м/с, разность давлений примерно 1...2 МПа). Указанная разность давлений (до 15 МПа) в тонком кольцевом зазоре между иглой и корпусом распылителя приводит к появлению циклических усилий до 50 Н на каждый цикл нагружения, что в итоге сопровождается появлением кавитационных и эрозионных явлений. Указанные явления впоследствии находят свое отражение в виде микронеровностей, трещин, раковин выкрашивания и следов износа в области контактного пояска уплотняющего сопряжения. По мере подъема иглы, происходит стабилизация и снижение скорости топливного потока ввиду постепенного увеличения площади проходного сечения, сформированного поверхностями иглы и корпуса. К толщине топливного слоя примерно в 15 мкм разность давлений существенно снижается и не превышает 1...2 МПа, что, в свою очередь, уже не столь опасно с точки зрения возникновения явлений гидродинамического изнашивания контактных поверхностей.

В соответствии с гидродинамической теорией движения жидкостей в каналах и полостях, при увеличении толщины слоя топлива в кольцевом зазоре от 2 до 28 мкм, скорость истечения топлива постепенно снижается от 100...105 м/с (при толщине слоя в 2 мкм) до 10...13 м/с (при толщине слоя в 28 мкм).

Поскольку наиболее чувствительной к изменениям гидродинамических параметров топливной среды оказалась толщина топливного слоя 2 мкм, наибольший интерес представляют исследования влияния параметров шероховатости поверхностей иглы и корпуса распылителя при данной толщине.

Характер изменения распределения гидродинамических давлений и скоростей потока позволяет сделать вывод об условной их стабилизации в центральной части потока по мере перемещения (подъема) иглы распылителя в ходе процесса впрыскивания. Локальные участки неоднородности распределения скоростей и давлений в потоке продолжают существовать вблизи поверхностей иглы и корпуса распылителя, но центральная часть потока может считаться относительно равномерной с точки зрения распределения скоростей и давлений в потоке уже после прохождения иглой первых 12...15 мкм своего пути.

выводы

На основании результатов, полученных в ходе гидродинамического моделирования процессов, имеющих место в области конического уплотняющего прецизионного сопряжения распылителя можно сделать следующие выводы:

1. Наиболее опасным участком с точки зрения возникновения явлений кавитационного и эрозионного изнашивания является начальный участок подъема иглы распылителя, составляющий примерно 12...15 мкм и характеризующийся наивысшими значениями перепадов давлений и скоростей в потоке топлива.

2. Следствием локальных увеличений скоростей в потоке топливной среды является увеличение разности давлений. Данное явление имеет удовлетворительное согласование с основными положениями теории движения жидких сред в каналах и полостях. При увеличении скорости потока до 100...105 м/с (применительно к модели толщиной 2

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 2017

ГИДРОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ТОПЛИВА В УПЛОТНЯЮЩЕМ ПРЕЦИЗИОННОМ СОПРЯЖЕНИИ ПРИ ПОВЫШЕННЫХ ДАВЛЕНИЯХ ВПРЫСКИВАНИЯ С УЧЕТОМ ШЕРОХОВАТОСТИ КОНТАКТНЫХ ПОВЕРХНОСТЕЙ ЭЛЕМЕНТОВ РАСПЫЛИТЕЛЯ

мкм) максимальное изменение давления в потоке топлива составило 14…15 МПа.

3. Уменьшение хода иглы распылителя, как самостоятельное мероприятие способствующее снижению изнашивания прецизионных сопряжений, целесообразно осуществлять совместно со снижением времени подъема иглы (особенно в начальной фазе подъема). Данное мероприятие способствует снижению опасности возникновения кавитационных и эрозионных процессов в тонком кольцевом слое топлива, сформированном поверхностями иглы и корпуса распылителя.

НАУЧНАЯ ПОДДЕРЖКА

Работа выполнена при поддержке Министерства образования и науки Российской Федерации в рамках программы «Михаил Ломоносов» (номер для публикаций: 9.9996.2017/5.2), и Германской службы академических обменов DAAD (Linie B, 2017 (57320204), project 91580049) и выполнен совместно с институтом Двигателей внутреннего сгорания Мюнхенского технического университета (Мюнхен, Германия).

СПИСОК ЛИТЕРАТУРЫ

1 Лазарев, В.Е. Метод оценки интенсивности изнашивания и ресурса прецизионного сопряжения распылителя топлива в дизеле / В.Е. Лазарев, А.А. Малоземов, В.Н. Бондарь // Двигателестроение. – 2007. – № 3. – С. 26–29.

2 Трусов, В.И. Форсунки автотракторных дизелей / В.И. Трусов, В.П. Дмитренко, Г.Д. Масляный. – М.: Машиностроение, 1977. – 167 с.

3 Трусов, В.И. Повышение надежности форсунок автотракторных дизелей / В.И. Трусов, В.П. Дмитренко, Г.Д. Масляный. – М.: НИИАВТОПРОМ, 1968. – 45 с.

4 Robert Bosch GmbH Dieselmotor-Management, volume 3., – 2002. ISBN 3-528-13873-4.

5 Johann A. Wloka & Georg Wachtmeister Macroscopic and Microscopic Spray Pattern for High Pressure Common – Rail Diesel Injection / Journal of Society of Automotive Engineering of Japan, 67(9), 2013.

6 Peters A.: Das Common Rail-Einspritzsystem – Ein Potenzial für den Direktenspritz-Dieselmotor, 3. Stuttgarter Motorensymposium, 23-25. Februar 1999.

7 Lazarev V.E. A Method for the Estimation of the Service Life of a Precision Guiding Interface "Needle – Nozzle Body" of a Common-Rail-Injector for High Rail Pressures / J. Wloka, G. Wachtmeister // JSAE/SAE International Conference – Powertrains, Fuels and Lubricants, 30 of Aug.-2 of Sept., 2011, Kyoto, Japan. Copyright © 2011 Society of Automotive Engineers of Japan, Inc.

8 Рысс, К.Н. Расчетное прогнозирование расходных характеристик распылителей дизельной топливной аппаратуры / К.Н. Рысс, А.А. Денисов, Л.В. Грехов, Ю.А. Гришин // Известия ВолгГТУ. – 2008. – № 3. – С. 57–60.

9 Польцер, Г. Основы трения и изнашивания. Пер. с нем. О.Н. Озерского, В.Н. Пальянова. / Г. Польцер, Ф. Майсснер. – М.: Машиностроение, 1984. – 264 с.

10 Крагельский, И.В. Трение и износ / И.В. Крагельский. – М.: Машиностроение, 1968. – 480 с.

Лазарев Владислав Евгеньевич – Доктор технических наук, заведующий кафедрой «Двигатели внутреннего сгорания и электронные системы автомобилей» Южно-Уральского государственного университета, e-mail: <u>lazarevve@susu.ru</u>, тел.: 8 -351-902-49-77;

Попов Александр Евгеньевич – к.т.н., доцент кафедры «Двигатели внутреннего сгорания и электронные системы автомобилей» Южно-Уральского государственного университета, e-mail: <u>popovae@susu.ru</u>, тел.: 8 -906-890-37-34;

Ломакин Георгий Викторович – к.т.н., доцент кафедры «Двигатели внутреннего сгорания и электронные системы автомобилей» Южно-Уральского государственного университета, е-mail: Igeorge@yandex.ru, тел.: 8(951) 47-75-120.