УДК 537.624.7

УСТРОЙСТВО РАЗМАГНИЧИВАНИЯ ДЛИННОМЕРНЫХ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ

Е.И. Уразбеков, А.Е. Гольдштейн

Предложено устройство высокопроизводительного размагничивания длинномерных изделий, основанное на использовании постоянного магнитного поля, корректируемого по измеряемым в процессе размагничивания начальной и остаточной намагниченностям изделия. Показаны конструктивные особенности устройства размагничивания.

Ключевые слова: намагниченность, размагничивание, остаточная магнитная индукция, коэрцитивная сила, релаксационная коэрцитивная сила.

При осуществлении магнитного и вихретокового контроля изделий из ферромагнитных материалов, как правило, применяется их намагничивание до состояния близкого техническому насыщению. В первом случае эта операция относится к числу основных для данного вида контроля, во втором - осуществляется как вспомогательная уменьшения влияния магнитных неоднородностей на результаты контроля [1-4]. Намагничивание изделий может также произойти в результате сварочных работ, механической обработки, использовании электромагнитов для перемещения или фиксации деталей и т.п. Во всех случаях для дальнейшего использования изделий требуется их размагничивание, поскольку повышенная остаточная намагниченность может вызвать нарушение нормальных условий работы приборов, препятствовать проведению последующих технологических операций, таких как сварка, сборка деталей в узлы, механическая обработка. Необходимость размагничивания особенно актуальна для изделий из легированных сталей, характеризующихся высокими значениями остаточной магнитной индукции и коэрцитивной силы.

В производственных условиях применяются два основных метода размагничивания: нагрев до температуры точки Кюри (для железа – 768 °С) и перемагничивание изделий в переменном равномерно убывающем до нуля магнитном поле [1]. Первый способ обеспечивает самое высокое качество размагничивания, однако имеет ограниченное применение ввиду изменения при нагреве структурномеханических свойств материала, а также малой пригодности к условиям поточного контроля и при больших габаритах намагниченных изделий. Недостатком второго метода является низкая производительность и высокие энергетические затраты при размагничи-

вании изделий большого сечения. Так, для обеспечения глубины проникновения магнитного поля на всю толщину изделия с размером в поперечном сечении более 25...50 мм частота намагничивающего тока должна быть порядка 1...2 Гц. При этом число размагничивающих периодов должно быть около 40...50. Время размагничивания прутков и труб длиной 6...10 м может достигать, десятков минут, что неприемлемо для большинства практических задач. Потребляемая мощность демагнитизаторов, построенных на данном принципе, составляет порядка единиц – десятков кВт [1].

Менее распространен метод размагничивания, основанный на кратковременном воздействии на намагниченное изделие постоянным магнитным полем обратной полярности [5, 6]. Достоинствами метода размагничивания постоянным полем являются возможность высокопроизводительного размагничивания крупногабаритных деталей и низкая потребляемая мощность. Недостаток данного метода, ограничивающий его широкое применение, заключается в сложности подбора необходимой напряженности размагничивающего поля. Последнее обусловлено следующими причинами. Размагничивание до нулевого значения остаточной индукции может быть обеспечено в случае. если напряженность размагничивающего поля равна релаксационной коэрцитивной силе. Ее значение зависит как от свойств материала изделия, так и от значения остаточной магнитной индукции, значительно изменяющегося по длине изделия вследствие структурных неоднородностей материала и неодинакового размагничивающего воздействия на разные vчастки торцов изделия. Поэтому установкой фиксированного значения напряженности размагничивающего поля невозможно обеспечить высокое качество размагничивания

УРАЗБЕКОВ Е.И., ГОЛЬДШТЕЙН А.Е

по всей длине, что ограничивает применение данного метода задачами размагничивания относительно небольших участков намагниченного изделия. Узкое применение, ограниченное, главным образом, задачами размагничивания торцов, соединяемых с помощью дуговой или электроннолучевой сварки намагниченных деталей, имеет и метод размагничивания в приложенном магнитном поле с напряженностью равной коэрцитивной силе [7]. Данное техническое решение пригодно также, как и предыдущее только для размагничивания небольших участков изделий, а кроме того не обеспечивает размагниченного состояния изделия после выключения источника размагничивающего поля.

Предложенное устройство размагничивания, основано на использовании постоянного магнитного поля, корректируемого по измеряемым в процессе размагничивания начальной и остаточной намагниченностям изделия [8]. Преимуществом такого технического решения является возможность качественного размагничивания протяженных ферромагнитных изделий большого сечения с высокой скоростью и при малой потребляемой мощности.

На рисунке 1 и 2 показана структурная схема устройства, реализующего предлагаемый метод размагничивания, а также диаграмма, поясняющая его работу.

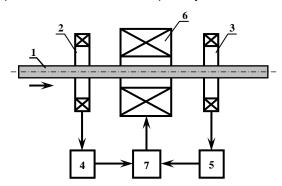


Рисунок 1 — Структурная схема размагничивающего устройства: 1) изделие; 2, 3) индукционные обмотки; 4, 5) интеграторы; 6) обмотка намагничивания; 7) регулятор тока

Устройство работает следующим образом. Намагниченное изделие 1 перемещаются через блок магнитных преобразователей, основными элементами которого являются индукционные обмотки 2, 3 и обмотка намагничивания 6. ЭДС обмоток 2 и 3 интегрируются электронными интеграторами 4 и 5. Выходное напряжение интегратора 4, пропорциональное первоначальной остаточной магнитной индукции B_{r1} изделия в плоскости сечения обмотки 2, подается на вход регулято-

ра тока 7, управляющего током обмотки намагничивания.

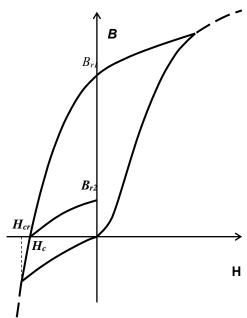


Рисунок 2 – Кривая перемагничивания ферромагнитного прутка из магнитотвердого материала

Коэффициент преобразования регулятора подбирается таким, чтобы ток обмотки намагничивания соответствовал значению релаксационной коэрцитивной силы H_{cr} (несколько большего, чем значение коэрцитивной силы H_c). Проверка качества размагничивания и устранение небольшого остаточного намагничивания осуществляется вторым контуром регулирования, в который входит индукционная обмотка 3 и интегратор 5, подключенный ко второму входу регулятора тока.

Индукционные обмотки и обмотка намагничивания конструкционно сведены в блок магнитных преобразователей (рисунок 3).

Введение магнитопровода 5 (рисунок 3) позволяет исключить влияние магнитного поля тока обмотки намагничивания 4 на измерительные обмотки 2 и 3 и уменьшает магнитное сопротивление цепи обмотки намагничивания 4, что существенно уменьшает массогабаритные параметры блока магнитных преобразователей.

Проведенные эксперименты свидетельствуют, что расстояние между обмоткой намагничивания и измерительными обмотками должно быть не более 30 мм. В противном случае качество размагничивания существенно уменьшается.

УСТРОЙСТВО РАЗМАГНИЧИВАНИЯ ДЛИННОМЕРНЫХ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ

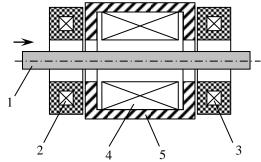


Рисунок 3 – Конструкция блока магнитных преобразователей

При анализе составляющих погрешности размагничивания выявлено, что одними из блоков, существенно влияющих на качество размагничивания, являются блоки электронных интеграторов 4 и 5 (рисунок 1). Электронные интеграторы собраны на прецизионных операционных усилителях по схеме компенсации дрейфа [9].

Особенностью этой схемы является незначительный дрейф интегратора при отсутствии входного сигнала. Это обеспечивается введением петли обратной связи с дополнительным интегратором, благодаря которой осуществляется самокоррекция интегрирования.

Для регулировки тока размагничивания использован усилительный каскад на мощном биполярном транзисторе, в коллекторную цепь которого включена обмотка намагничивания 6 (рисунок 1), а управление осуществляется выходными напряжениями интеграторов 4 и 5, поданными через сумматор на базу транзистора.

Время размагничивания изделий составляет единицы секунд, при скорости движения до 4 м/с.

Качество размагничивания проверялось на специально спроектированном компьютеризированном измерительном комплексе. Данная измерительная установка предназначена для измерения и графического отображения распределения остаточной магнитной индукции по длине изделия. Измерение B_r осуществляется с помощью индукционного преобразователя и электронного интегратора.

Для ввода измерительной информации в ПЭВМ использована плата сбора данных USB-6002 компании National Instruments. Плата сбора данных имеет АЦП с разрешением шестнадцать бит и позволяет осуществлять

преобразование до 50 кило выборок в секунду.

Обработка измерительной информации реализована с использованием пакета программ LabVIEW компании National Instruments. На рисунке 4 представлен внешний вид окна программы.

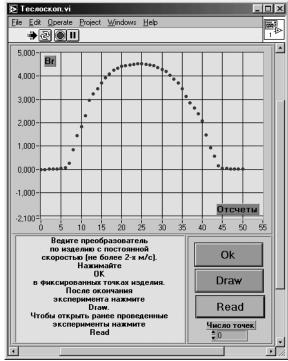


Рисунок 4 – Внешний вид окна программы

Программа имеет интуитивно-понятный интерфейс и легко модернизируется под нужды оператора.

Результаты измерения записываются в табличный файл, что позволяет производить их последующую обработку и построение зависимостей любым доступным программным обеспечением.

Полученные кривые распределения остаточной магнитной индукции по длине прутка из стали ШХ-15СГ диаметром 20 мм представлены на рисунке 5.

Таким образом, остаточная магнитная индукция после размагничивания не превышает 50 Гс в середине изделия и 150 Гс на его концах, что является удовлетворительным для широкого круга задач, поскольку такая намагниченность не препятствует проведению сварочных работ и не оказывает влияние на близко расположенные устройства.

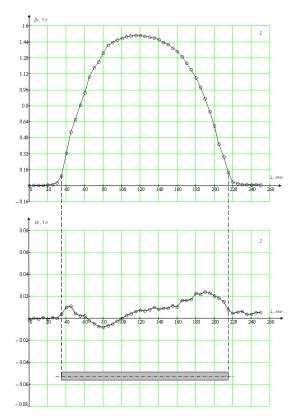


Рисунок 5 — Кривые распределения остаточной магнитной индукции по длине изделия: 1) в намагниченном состоянии; 2) после размагничивания

Повышенное значение остаточной намагниченности на концах изделия обусловлено тем, что эти части подвергаются размагничиванию в условиях разомкнутой магнитной цепи и соответственно фактически разомкнутых контурах регулирования тока размагничивания.

Устройство размагничивания, реализующее метод, основанный на использовании постоянного магнитного поля, корректируемого по измеряемым в процессе размагничивания начальной и остаточной намагниченностям, является наиболее приемлемым при поточном контроле изделий, либо конвейерном размагничивании, из-за высокого быстродействия, низкого энергопотребления и достаточно высокого качества размагничивания. После проведения размагничивания остаточная намагниченность находится в рамках не препядствующих проведению сварки (менее 0,02 Тл) [10], и не вызывает налипания ферромагнитных частиц более 0,1 MM.

СПИСОК ЛИТЕРАТУРЫ

- 1. Приборы для неразрушающего контроля материалов и изделий. Справочник/ под ред. В.В. Клюева. Кн. 2. 2-е изд. М.: Машиностроение, 1986. 352 с.
- 2. Корсаков В.В. Средства магнитопорошковой дефектоскопии/ В.В. Корсаков, С.М. Рождественский, И.Б. Семеновская, В.К. Юренков. М.: Машиностроение, 1982. 68 с.
- 3. Yakimov E. V. Reducing the impact of electroconductivity and the gap between the pipe and the transducer at measuring thickness of electroconductive pipe walls using the eddy-current method [Электронный ресурс] / E. V. Yakimov, D. Ustyugov // MATEC Web of Conferences. –2016. Vol. 79. С. 01069. Режим доступа: http://dx.doi.org/10.1051/matecconf/20167901069
- 4. Гольдштейн А.Е. Вихретоковый контроль внутреннего диаметра труб / А.Е. Гольдштейн, В.Ф. Булгаков, Е.В. Якимов, Е.И. Уразбеков// Ползуновский вестник. 2012. № 3/2. С. 174-179.
- 5. Пат. № 1325346 СССР. МКИ G01N 27/84. Устройство для размагничивания деталей при магнитопорошковой дефектоскопии / Г.С. Шелехов, И.Г. Викулов, А.И. Почкаев, Г.И. Баранов. Заявл. 26.03.86; опубл. 23.07.87. Бюл. № 27. 2 с.: ил.
- 6. Волохов С.А. Размагничивание труб перед сваркой на магистральных трубопроводах / С.А. Волохов, П.Н. Добродеев, Г.Я. Безлюдько, В.Ф. Мужицкий// Приборы и системы. Управление, контроль, диагностика. 1999. № 8. С. 41-43.
- 7. Лесков Г.И. Условия размагничивания изделий перед сваркой и способы их обеспечения /Г.И. Лесков, Н.Е. Протосей, Д.Ю. Новиков// Автоматическая сварка. 1987. № 7. С. 40-45.
- матическая сварка. 1987. № 7. С. 40-45. 8. Пат. № 1748034 СССР. МКИ G01N 27/84. Устройство для размагничивания изделий / А.Е. Гольдштейн, С.А. Калганов, А.П. Карлов, П.А. Овсянников. Заявл. 28.05.90; опубл. 15.07.92. – Бюл. № 26. – 5 с.: ил.
- 9. Хорвиц П. Искусство схемотехники/ П. Хорвиц, У.Хилл. – Т.2. – М.: Мир, 1993. – 370 с.
- 10. Дроздов А.П. Влияние магнитных полей на качество сварных соединений конструкций из низколегированных сталей/ А.П. Дроздов, К. Пак, Н.Н. Рубцов// Сварочное производство. 1977. № 10. С. 16-18.

Уразбеков Евгений Иванович — старший преподаватель кафедры Физических методов и приборов контроля качества Национального исследовательского Томского политехнического университета, г. Томск, e-mail: urazbekov@tpu.ru

Гольдитейн Александр Ефремович — д.т.н., профессор кафедры Физических методов и приборов контроля качества Национального исследовательского Томского политехнического университета, г. Томск, e-mail: algol@tpu.ru