# О ВЛИЯНИИ ФУНКЦИОНАЛЬНЫХ ПОКРЫТИЙ НАНОАЛЮМИНИЯ НА СКОРОСТЬ ГОРЕНИЯ ТОПЛИВНОЙ МАТРИЦЫ

М.В. Комарова, А.Б. Ворожцов, А.Г. Вакутин

Экспериментально изучены высокоэнергетические материалы на основе «активного» тетразольного связующего и капсулированного полимерами и органическими кислотами наноалюминия. Приведены результаты термогравиметрических исследований и измерений линейных скоростей горения неотверждённых составов – топливных матриц. Показана возможность регулирования скорости горения таких композиций за счет свойств материала покрытия.

Ключевые слова: наноразмерный алюминий, функциональные покрытия, высокоэнергетические материалы, скорость горения.

## ВВЕДЕНИЕ

Известно, что использование порошков алюминия в составах смесевых конденсированных систем повышает их энергетические возможности [1]. Введение металлических порошков в высокоэнергетические материалы (ВЭМ) приводит к усложнению структуры топливных систем, к изменению процесса горения и воспламенения, к агломерации частиц на поверхности горящего топлива и в волне горения, накоплению конденсированных продуктов (например – шлаков в камере сгорания) и порче элементов двигателя [1, 2]. Часть указанных проблем связана с результатами окисления алюминия, т.е. процессом образования конденсированного оксида, на который можно влиять, используя методы модификации металлических частиц [2, 3].

Модификация микронного алюминия марок «АСД» методом капсулирования органическими веществами [4] позволяет за счет нанесенных на поверхность частиц покрытий интенсифицировать воспламенение и сдерживать рост оксидных плёнок, меняя, таким образом, условия сгорания металла на более благоприятные [5, 6]. Капсулирование органическими веществам наноразмерного алюминия не менее актуально, поскольку такое покрытие позволяет решать также проблемы связанные с его высокой химической активностью, образованием агломератов и гигроскопичностью [7, 8].

В работе Д.А. Ягодникова [2] на примере алюминия, капсулированного фторполимерами, приводится модель воспламенения частицы алюминия с разлагающимся органическим покрытием, в которой сам процесс нагрева корректируется за счет разложения материала покрытия. На основании этой модели

и результатах экспериментальных и теоретических исследований [2, 7, 9], можно сделать вывод, что любое органическое покрытие играет роль защиты от взаимодействия с кислородом до определенного момента (достижения температуры структурного разрушения или пиролиза) и должно способствовать улучшению окисления алюминия при нагреве. Тем не менее, имеются экспериментальные данные, иллюстрирующие снижение скорости горения высокоэнергетических материалов не смотря на присутствие в них модифицированных порошков. причиной которого является состав топлива и тип связующего [2, 10, 11]. Следовательно, необходимо учитывать эти определяющие факторы и при положительном результате капсулирования алюминиевых частиц, проверять пригодность порошка на топливной композиции с конкретным типом связующего.

Таким образом, целью данной работы является экспериментальное исследование влияния порошков наноалюминия, частицы которых покрыты органическими соединениями, на линейную скорость горения металлизированных ВЭМ (далее топливных матриц).

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В экспериментах использовались электровзрывные порошки алюминия (Al), капсулированные органическими веществами: стеариновой (октадекановой) кислотой, фтористым полимером марки «Viton», полиуретаном «Сурэл», оксихинолином и глиоксалем (дигидрат тримера глиоксаля). Покрытия наносились из растворов соответствующей концентрации (таблица 1) методом обработки в ультразвуковом гомогенизаторе в течение двух часов, затем растворитель полностью удаляли с помощью центрифуги, а полученный порошок подвергали окончательной сушке в вакуумном шкафу при температуре 23 °С.

|     | Таблица   | 1 -  | - | Химически  | Й | состав | раств | 0- |
|-----|-----------|------|---|------------|---|--------|-------|----|
| ров | для капсу | /лир | 0 | вания нанс | a | люмини | 1Я    |    |

|       | Реагент                                                                         | Растворитель                                  | %   |
|-------|---------------------------------------------------------------------------------|-----------------------------------------------|-----|
| Al(Φ) | фторполимер<br>«Viton»                                                          | этилацетат<br>С₄Н <sub>8</sub> О₂             | 1   |
| AI(Π) | полимер<br>«Сурэл»                                                              | этилацетат<br>С₄H <sub>8</sub> O <sub>2</sub> | 1   |
| AI(O) | оксихинолин<br>C <sub>9</sub> H <sub>7</sub> NO                                 | ИПС<br>С <sub>3</sub> Н <sub>8</sub> О        | 1   |
| Al(Γ) | глиоксаль<br>[(CHO) <sub>2</sub> ] <sub>3</sub> (H <sub>2</sub> O) <sub>2</sub> | ИПС<br>С <sub>3</sub> Н <sub>8</sub> О        | 2,5 |
| AI(C) | стеариновая<br>кислота<br>С <sub>17</sub> Н <sub>35</sub> СООН                  | петролейный<br>эфир                           | 1   |

\*ИПС – Изопропиловый спирт

В состав высокоэнергетических материалов входили капсулированные порошки алюминия (30 % масс.) и «активное» связующее на основе тетразольного полимера (70 % масс.). Путем механического смешивания получали достаточно однородные композиции, которые, согласно определению элементов структуры смесевых топлив, являются «базовыми подсистемами компонентов» [12] или топливными матрицами [13].

Для исследования горения топливных матриц использовался метод визуализации, позволявший фиксировать весь процесс фотографическим способом посредством соответствующего оборудования (FUJIFILM Fine-Pix HS50 EXR). Образцы сжигали в воздушной среде при комнатной температуре.

Физико-химические свойства отдельных компонентов энергетических материалов и готовых топливных матриц изучены в серии термоаналитических экспериментов (термогравиметрия/ дифференциальный термический анализ TGA/SDTA851<sup>е</sup> и дифференциальная сканирующая калориметрия DSC882<sup>е</sup>).

## РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рисунке 1 приведена термограмма нанопорошка Al(O). Термогравиметрическая (TGAкривая, —) и дифференциальная термическая (SDTA-кривая —) линии получены линейным нагревом образцов массой 3,6 мг ÷ 3,8 мг в диапазоне температур от 25 °C до 900 °C со скоростью нагрева 40 °C/мин. в атмосфере воздуха. Согласно термограмме (рисунок 1), капсулированный оксихинолином наноалюминий окисляется в указанном диапазоне в два этапа:

– Первоначальное изменение веса образца (прирост массы), определяемый по TGA-кривой [14] фиксируется при достижении температуры 408 °C; интенсификация процесса окисления наступает при 586,5 °C (начало первого экзотермического эффекта на SDTA-кривой) и достигает максимального значения при 629,7 °C (экзотермический пик). На этом этапе алюминий взаимодействует преимущественно с кислородом воздуха.

– Дальнейшее изменение веса образца, соответствующее второй ступени прироста массы на термогравиметрической кривой и второму экзотермическому пику (833,6 °C) иллюстрирует взаимодействие с азотом.

Термограмма, показанная на рисунке 1, является типичной для всех капсулированных нанопорошков, исследованных в данной работе.



Все порошки взаимодействовали с воздухом аналогичным образом (два экзотермических пика, две ступени прироста массы), различались только численные значения основных параметров:  $T_n$  – температура первого экзотермического пика,  $\Sigma Q$  – суммарное количество тепла при окислении,  $V_{max}$  – максимальная скорость тепловыделения,  $\Delta m$  – полное изменение веса,  $T_{HO}$  – температура начала окисления (таблица 1).

Согласно результатам, перечисленным в таблице 1, очевидно, что капсулирование влияет на начало окисления наноалюминия. Модифицированные порошки реагируют при более высоких температурах ( $T_{Ho}$ ), чем исходный AI, при этом выделяется больше тепла ( $\Sigma Q$ ) за счет повышения интенсивности процесса. В результате капсулированный наноалюминий подвергается более глубокому окислению в обозначенном температурном интервале.

| окисления модифицированных нанопорошков Аг |                               |              |                                    |                   |                              |  |
|--------------------------------------------|-------------------------------|--------------|------------------------------------|-------------------|------------------------------|--|
| Образец                                    | <i>Т</i> <sub>п</sub> ,<br>°С | ΣQ,<br>кал/г | <i>V<sub>max</sub>,</i><br>кал/г∙с | ∆ <i>m</i> ,<br>% | <i>Т<sub>но</sub>,</i><br>°С |  |
| AI                                         | 646                           | 1732         | 11,7                               | 43                | 323                          |  |
| Al(Φ)                                      | 625                           | 1848         | 11,4                               | 51                | 428                          |  |
| Al(Π)                                      | 615                           | 1917         | 10,8                               | 50                | 415                          |  |
| Al(O)                                      | 630                           | 2602         | 11,8                               | 58                | 408                          |  |
| Al(Γ)                                      | 634                           | 2263         | 13,7                               | 54                | 352                          |  |
| AI(C)                                      | 608                           | 2314         | 12,1                               | 52                | 420                          |  |

Таблица 2 – Численные характеристики жисления модифицированных нанопорошков AI

Таким образом, несмотря на различие физико-химических свойств покрытий: оксихинолин, например, плавится уже при температуре 72,7 °С, как показано на термограмме дифференциальной сканирующей калориметрии (DSC-кривая) на рисунке 2; полимеры «Viton» и «Сурэл» разлагаются без плавления при более высоких температурах с выделением тепла; стеариновая кислота ведёт себя аналогично оксихинолину (плавится при 59,7 °С и испаряется при 288,8 °С), материал капсулы во всех случаях благотворно сказался на окислении наноалюминия.



Рисунок 2 – DSC-кривая оксихинолина

Изучение поведения топливных матриц проводилось в проточной воздушной атмосфере печи термоанализатора. Диапазон линейного нагрева со скоростью 40 °С/мин. от 25 °С до 1200 °С позволил зарегистрировать пять экзотермических эффектов, максимальное значение из которых демонстрировал четвертый эффект (таблица 3). Исключение составила лишь сама основа топливной матрицы – тетразольное связующее, деструкция которого проходила в четыре этапа, которым соответствовали четыре экзотермических пика с максимальным эффектом при 210 °С.

Из данных, перечисленных в таблице 4, видно, что окисление наноалюминия и его модифицированных аналогов в топливных

матрицах начинается позже и протекает менее интенсивно, чем в воздушной среде (таблица 2, параметры *T*<sub>но</sub> и *V*<sub>max</sub>). При этом ранг характеристики *ΣQ* (общее количество тепла, выделившееся при нагреве) капсулированных порошков и соответствующих энергетических материалов сохраняется.

Таблица 3 – Температуры пиков экзотермических эффектов топливных матриц

| Ofnorou | Температура пика, °С |     |     |     |     |  |  |
|---------|----------------------|-----|-----|-----|-----|--|--|
| Ооразец | 1                    | 2   | 3   | 4   | 5   |  |  |
| Связка  | 210                  | 311 | 403 | 624 | I   |  |  |
| AI      | 218                  | 316 | 396 | 625 | 846 |  |  |
| Al(Φ)   | 220                  | 316 | 565 | 654 | 926 |  |  |
| Al(Π)   | 218                  | 318 | 397 | 628 | 847 |  |  |
| AI(O)   | 218                  | 319 | 396 | 625 | 840 |  |  |
| Al(Γ)   | 218                  | 319 | 396 | 625 | 845 |  |  |
| AI(C)   | 218                  | 318 | 394 | 605 | 836 |  |  |

Таблица 4 – Параметры ΣQ, V<sub>max</sub> и T<sub>но</sub> топливных матриц

| Образец | ΣQ, кал/г | V <sub>max</sub> ,<br>кал·г <sup>-1</sup> ·с <sup>-1</sup> | <i>Т<sub>но</sub>,</i><br>°С |
|---------|-----------|------------------------------------------------------------|------------------------------|
| Связка  | 940       | 2,1                                                        | -                            |
| AI      | 1527      | 5,7                                                        | 570                          |
| Al(Φ)   | 1534      | 7,5                                                        | 620                          |
| Al(Π)   | 1626      | 6,0                                                        | 560                          |
| AI(O)   | 1907      | 7,1                                                        | 570                          |
| Al(Γ)   | 1762      | 5,9                                                        | 565                          |
| AI(C)   | 1879      | 8,5                                                        | 570                          |

Поскольку именно тепло химических реакций, протекающих в ВЭМ, является определяющей характеристикой горения материала, влияние капсулированного AI на скорость горения проявится в аналогичной последовательности. Согласно значениям в таблице 4, топливная матрица с наноалюминием, покрытым оксихинолином должна гореть быстрее остальных, а скорость горения с AI(Ф), то есть с покрытием из фторполимера, будет близка к скорости горения топливной матрицы с немодифицированным наноалюминием.

Высокоэнергетические композиции цилиндрической формы объёмом 96 мм<sup>3</sup> каждая (высота образца = 8 мм, диаметр = 12 мм) сжигали без учета периода воспламенения. Результаты измерений перечислены в таблице 5. На рисунке 3 показаны значения скоростей и соответствующие им параметры ΣQ, полученные в ходе термогравиметрического анализа.

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 Т.1 2016

| Алюминий | іний V <sub>гор</sub> , <i>мм/с</i> Алюминий |       | V <sub>гор</sub> , мм/с |  |  |  |
|----------|----------------------------------------------|-------|-------------------------|--|--|--|
| AI       | 1,21                                         | AI(O) | 1,81                    |  |  |  |
| Al(Φ)    | 1,27                                         | AI(Γ) | 1,52                    |  |  |  |
| AI(Π)    | 1,37                                         | AI(C) | 1,73                    |  |  |  |

Таблица 5 – Скорости горения топливных матриц с капсулированным наноалюминием

₽Q, кал/г•с



Рисунок 3 – Диаграмма значений ΣQ и V<sub>гор</sub> топливных матриц

Рисунок 3 является графической иллюстрацией, подтверждающей ранее высказанное предположение о качественном влиянии материала покрытия на процесс окисления наноалюминия.

#### ЗАКЛЮЧЕНИЕ

Методами термогравиметрии и дифференциальной сканирующей калориметрии изучены свойства топливных матриц на основе «активного» тетразольного связующего и модифицированных органическими соединениями наноалюминия. Показано, что любое из органических веществ, используемых в качестве покрытия (стеариновая кислота, оксихинолин, глиоксаль, полимеры «Viton» и «Сурэл»), влияет на окислительный процесс капсулированных частиц и содержащих их топливных композиций.

Результаты экспериментов по горению ВЭМ подтвердили результаты и гипотезы других авторов [2] о возможности регулирования скорости горения высокоэнергетических материалов за счет корректировки «защитных» свойств покрытия алюминиевых частиц органическими реагентами.

### СПИСОК ЛИТЕРАТУРЫ

1. Паушкин, Я. М. Жидкие и твердые химические ракетные топлива / Я. М. Паушкин. – М. : Нау-

ка, 1987. – 192 с.

2. Ягодников, Д. А. Воспламенение и горение порошкообразных металлов / Д. А. Ягодников. – М. : Изд-во МГТУ им. Н.Э. Баумана, 2009. – 432 с.

Брейтер, А. Л. Пути модификации металлического горючего конденсированных систем /
А. Л. Брейтер, В. М. Мальцев, Е. И. Попов // Физика горения и взрыва. – 1990. – Т. 26, № 1. – С. 97–104.
4. Солодовник, И. Д. Микрокапсулирование /

4. Солодовник, И. Д. Микрокапсулирование / И. Д. Солодовник. – М. : Химия, 1980. – 292 с.

5. Похил, П. Ф. Горение порошкообразных металлов в активных средах / П. Ф. Похил, А. Ф. Беляев, Ю. В. Фролов. – М. : Наука, 1972. – 294 с.

6. Глотов, О. Г. Экспериментально-теоретическое исследование воспламенения, горения и агломерации капсулированных частиц алюминия в составе смесевого твердого топлива. II. Экспериментальные исследования / О. Г. Глотов, Д. А. Ягодников, В. С. Воробьев, В. Е. Зарко, В. Н. Симоненко // Физика горения и взрыва. – 2007. – Т. 43, № 3. – С. 83–97.

7. Komarov, V. F. Stabilizing Coatings for Nanodimensional Aluminum / V. F. Komarov, M. V. Komarova, A. B. Vorozhtsov, M. I. Lerner // Russian Physics Journal. – 2013. – Vol. 55, № 10. – P. 1117–1122.

8. Лернер, М. И. Пассивация наноразмерного порошка алюминия для применения в высокоэнергетических материалах / М. И. Лернер, Е. А. Глазкова, А. Б. Ворожцов, Н. Г. Родкевич, С. А. Волков, А. Н. Иванов // Химическая физика. – 2015. – Т. 34, № 1. – С. 46–51.

9. Громов, А. А. Пассивирующие покрытия на частицах электровзрывных нанопорошков алюминия (обзор) / А. А. Громов, Ю. И. Строкова, А. А. Дитц // Химическая физика. – 2010. – Т. 29, № 2. – С. 77–91.

10. Babuk, V. A. Propellant formulation factors and metal agglomeration in combustion of aluminized solid rocket propellant / V. A. Babuk, V. A. Vassiliev, V. V. Sviridov // Combustion Science and technology. – 2001. – Vol. 163. – P. 261–289.

11. Бабук, В. А. Исследование агломерации частиц алюминия при горении в составе смесевых конденсированных систем / В. А. Бабук, В. П. Белов, В. В. Ходосов, Г. Г. Шелухин // Физика горения и взрыва. – 1985. – Т. 21, № 3. – С. 20–25.

12. Чуйко, С.В. Взаимодействие подсистем компонентов в смесевых топливах / С.В. Чуйко, Ф.С. Соколовский, Г.В. Нечай // Химическая физика. – 2005. – Т. 24, № 9. – С. 59–67.

13. Соколовский, Ф. С. Взаимодействие компонентов смесевого топлива с фронтом горения / Ф. С. Соколовский, Г. В. Нечай, С. В. Чуйко // Химическая физика. – 2007. – Т. 26, № 1. – С. 22–34.

14. Уэндлант, Т. Термические методы анализа / Т. Уэндлант – М. : Мир, 1978. – 407 с.

Комарова Марина Витальевна, к.ф.м.н., н.с. ИПХЭТ СО РАН, тел.: (3854)305971, e-mail: mv10mv@mail.ru.

Ворожцов Александр Борисович, д.ф.м.н., профессор, зам. директора по НР ИП-ХЭТ СО РАН, тел.: (3822)220567, e-mail: abv@mail.tomsknet.ru.

Вакутин Алексей Геннадьевич, к.т.н., м.н.с. ИПХЭТ СО РАН, тел.: (3854)301671, еmail: alex-wakutin@mail.ru.

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 Т.1 2016