ЭНЕРГЕТИЧЕСКИЕ ПОКРЫТИЯ НАНОАЛЮМИНИЯ НА ОСНОВЕ НИТРОТРИАЗОЛОНА

М.В. Комарова, Н.В. Козырев, Г.Т. Суханов, И.А. Крупнова, Н.В. Бычин

Приведены результаты термических и термогравиметрических исследований физикохимических свойств наноалюминия, покрытого методом капсулирования малочувствительными взрывчатыми веществами. Рассмотрена возможность применения N-замещенных-3нитро-1,2,4-триазол-5-OH в качестве функциональных энергетических покрытий порошков алюминия.

Ключевые слова: нанопорошки алюминия, функциональные покрытия, энергетические конденсированные системы.

ВВЕДЕНИЕ

Настоящее исследование является продолжением экспериментальных работ в области получения функциональных покрытий наноалюминия, предназначенного для применения в энергетических конденсированных системах (ЭКС) повышенной мощности и пониженной чувствительности [1], поскольку вопросы безопасности эксплуатации военной и гражданской техники, предусматривающей использование ЭКС, приобретают все большую актуальность. Необходимость сочетания безопасности в обращении и повышения работоспособности таких материалов предполагает поиск нетривиальных решений при конструировании энергетических композиций.

Присутствие в современных высокоэнергетических материалах наноразмерных компонентов требует специальной обработки окислителя (флегматизации), защиты металлического горючего, подавления агломерации наночастиц. На протяжении последних двух десятилетий основное внимание при применении металлических нанопорошков в энергетических системах уделялось практической задаче модификации поверхности наноалюминия, с целью понижения активного окисления (старения) и воздействия влажности при хранении [2-4]. В этом случае в качестве «защитных» покрытий чаще других используются химические вещества, обладающие водоотталкивающими свойствами, и полимеры [5-7]. В данной работе предлагается исследовать возможность совмещения защитных свойств покрытий и увеличения за их счет энергетических показателей алюминиевых порошков. В связи с этим целесообразен выбор веществ из соответствующей компонентной базы, например, взрывчатых веществ, обладающих высокой мощностью и низкой чувствительностью.

Одним из наиболее известных, устойчивых к случайному инициированию, является так называемое малочувствительное взрывчатое вещество – нитротриазолон, который используется как компонент энергетических материалов и как самостоятельное взрывчатое вещество [8]. Представляют интерес и его производные – N-замещенные-3-нитро-1,2,4-триазол-5-OH.

Таким образом, целью исследования является изучение свойств высокоэнергетических систем, содержащих наноалюминий, покрытый производными нитротриазолона.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения покрытий были выбраны три варианта N-замещенных-3-нитро-1,2,4триазол-5-OH: 4-метил-3-нитро-1,2,4-триазол-5-OH (метилнитротриазолон, 4-Me-HTO), 1изопропил-3-нитро-1,2,4-триазол-5-OH (изопропилнитротриазолон, 1-iPr-HTO) и 1вторбутил-3-нитро-1,2,4-триазол-5-OH (вторбутилнитротриазолон, 2-sBu-HTO). Контрольная партия порошка покрывалась нитротриазолоном (HTO).

Все реагенты, кроме нитротриазолона, представляли собой порошки, состоящие из бесцветных кристаллов 20 мкм ÷ 800 мкм, плавящихся при различных значениях температур от 150 °C до 200 °C. Кристаллы при комнатной температуре достаточно хорошо растворяются в изопропиловом спирте и ацетоне, что позволяет применять растворы различной концентрации и получать функциональные покрытия различной толщины методом микрокапсулирования [1] на отдельных частицах порошкообразных материалов.

Покрытия наносились на микронные частицы «АСД-4» и наноразмерный порошок алюминия марки «Alex», полученный мето-

дом электрического взрыва проволок. Порошок «Alex» состоял из агломерированных наночастиц алюминия, среднесчётный диаметр которых около 200 нм.

Тестирование эффективности полученных покрытий проводилось методом сравнительного анализа ряда физико-химических свойств покрытого энергетическими реагентами наноалюминия (взаимодействие с водой и связующим, дисперсность частиц и агломератов, изменения термических характеристик и т.п.), для определения которых в настоящем исследовании использовались:

– модульные термоанализаторы «Mettler Toledo» TGA/SDTA 851^e и DSC822^e для получения термодинамических и кинетических данных алюминия; микронных частиц и наноалюминия покрытых нитротриазолоном (АСД4-НТО, Alex-НТО) и N-замещенными-3нитро-1,2,4-триазал-5-ОНми (метилнитротриазолоном - АСД4-Ме, Alex-Ме; изопропилнитротриазолоном - АСД4-iPr, Alex-iPr; вторбутилнитротриазалоном - АСД4-sBu, AlexsBu); а также энергетических конденсированных систем, содержащих модифицированные порошки алюминия и «активное» тетразольное связующее. Термогравиметрические исследования проводились в воздушной атмосфере в режиме линейного нагрева образцов в диапазонах температур от 25 °C до 450 °C и от 25 °C до 900 °C со скоростью 0,7 К·с⁻¹; для дифференциальной сканирующей калориметрии использовался азот. Вычислялись значения параметров: ΣQ (суммарное тепло), V_{max} (максимальная скорость тепловыделения), Т_{но} (температура начала окисления) и Δm (изменение массы);

– электронная сканирующая микроскопия (РЭМ JSM-840 с разрешающей способностью 0,4 нм) для определения качественного характера энергетического покрытия и размерности наночастиц в агломератах алюминия посредством анализа электронных изображений исследуемого материала с 0,5·10⁴ ÷ 2,5·10⁴ кратным увеличением;

– оптическая просвечивающая микроскопия (Motic DMBA-300 Professional Series) с возможностью цифровой видеосъемки объекта наблюдения для визуализации процессов взаимодействия отдельных компонентов и определения влияния функционального покрытия на изменение размерности агломератов в энергетических конденсированных системах;

– комплексное программное обеспечение обработки цифровых изображений «Images Plus» и «Olimpus analysis».

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты термических исследований N-замещенных-3-нитро-1,2,4-триазол-5-ОНов приведены в таблице 1. Знаки «+» и «-» обозначают соответственно экзотермические и эндотермические эффекты.

ьодпых						
	Парамет	50				
Образец	Начало	Оконча- ние	Пик	2 Q, Дж/г		
HTO	279,1	287,4	284,4	+1207		
1-iPr-HTO	158,6 229,5	163,8 342,2	159,5 295,4	-145,0 +242,7		
2-sBu-HTO	150,4 233,7	156,5 346,5	152,1 293,9	-147,9 +340,2		
4-Me-HTO	197,2 227,0	202,1 235,7	197,9 234,5	-198,1 +933,3		

Таблица 1 – Величины и местоположения термических эффектов НТО и его производных

Согласно полученным данным, каждое из веществ (кроме HTO) имеет четко дифференцируемый отрицательный тепловой эффект – плавление. В связи с этим, следует отметить, что температурный диапазон, соответствующий эндотермическому эффекту, позволяет наносить энергетические покрытия на порошки алюминия не только из растворов, но и из расплавов. Сложность при таком способе микрокапсулирования заключается в регулировании толщины и равномерности плёнки, а также повышении прочности агломератов наночастиц алюминия.

Все указанные в таблице 1 реагенты обладали плёнкообразующими свойствами и наносились на порошки из 5 % растворов в ацетоне. Несмотря на то, что производные нитротриазолона являются ограниченно растворимыми в воде веществами, полученные пленки предохраняли алюминий от воздействия воды.

Анализ размерности обработанных микронных частиц «АСД-4» показал, что в среднем она осталась прежней, а для алюминия «Alex» сместилась в сторону увеличения содержания наночастиц более 200 нм, при максимальном количестве частиц диаметром 250 нм (рисунок 1). Величины агломератов при диспергировании в процессе изготовления высокоэнергетических композиций существенных отличий не показали, их распределение по размерам фактически совпало с распределением исходного наноалюминия в связующем (рисунок 2). Следовательно, физические структуры топливных систем будут идентичными, независимо от модификаций поверхности металлических порошков.

Рисунок 1 – Графики распределения частиц Alex и Alex-HTO по размерам

Рисунок 2 – Гистограмма распределения агломератов Alex и Alex+sBu-HTO по размерам

На рисунке 3 показана термограмма наноалюминия, покрытого изопропилнитротриазолоном. Термограммы остальных модифицированных порошков алюминия «Alex» выглядят аналогичным образом:

• На термогравиметрической кривой (ТГ) выделяются три участка, первый из которых соответствует процессам деструкции покрытия и удаления адсорбированной воды и газов (уменьшение массы образца); второй – окислению наноалюминия кислородом воздуха (первая ступень увеличения массы образца); третий – взаимодействию алюминия с азотом (вторая ступень увеличения массы).

• На кривой дифференциального термического анализа (ДТА) выделяются два экзотермических эффекта, сопутствующих окислительным реакциям.

Рисунок 3 – Термограмма нанопорошка Alex+iPr-HTO

Термограммы модифицированных порошков «АСД-4» также практически одинаковы, но заметно отличаются от термограмм «Alex». Для «АСД-4» характерно присутствие на кривой ДТА двух эндотермических эффектов, соответствующих фазовому переходу в оксидной плёнке алюминия (пик ≈ 260 °C) и плавлению алюминия (пик 660 °C).

В таблице 2 приведены основные кинетические параметры для порошков «Alex» и «АСД-4».

Таблица 2 – Термические характеристики покрытых порошков алюминия

-			
ΣQ, кал/г	V _{max} , кал·г ⁻¹ ·с ⁻¹	∆ <i>m</i> , %	<i>Т_{но},</i> °С
1257	11,8	43,0	420
180	0,8	4,8	500
1485	11,4	47,1	450
1283	11,4	40,1	440
1425	11,6	36,9	455
1311	12,5	40,5	460
221	0,8	4,6	520
185	0,8	4,4	530
190	0,7	4,4	550
220	0,7	4,2	560
	ΣQ, καπ/r 1257 180 1485 1283 1425 1311 221 185 190 220	Σ Q, кал/г V_{max} , кал·г ⁻¹ ·с ⁻¹ 125711,81800,8148511,4128311,4142511,6131112,52210,81850,81900,72200,7	ΣQ, καл/г V_{maxs} кал·г ⁻¹ ·c ⁻¹ Δm , %125711,843,01800,84,8148511,447,1128311,440,1142511,636,9131112,540,52210,84,61850,84,41900,74,42200,74,2

Согласно данным таблиц 1 и 2 очевидно, что энергетические покрытия микронного алюминия оказывают слабое влияние на термические свойства порошка. Ранжирование «+» тепловых эффектов из таблицы 1 соответствует следующей последовательности:

HTO > 4-Me-HTO > 2-sBu-HTO > 1-iPr-HTO.

Сравнивая значения параметра ΣQ из таблицы 2, для ACД4-HTO, ACД4-iPr-HTO, ACД4-sBu-HTO и ACД4-Me-HTO получим по-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 Т.1 2016

хожие соотношения. Этот факт говорит о том, что покрытия в рассматриваемом случае представляют собой небольшие «тепловые» добавки, мощности которых недостаточно для интенсификации разогрева микронных частиц. Исходя из вышесказанного, напрашивается вывод о неэффективности использования покрытий данного типа для алюминия «АСД-4».

Иначе обстоит дело в случае наноалюминия. Из таблицы 2 следует, что наибольшее количества тепла выделяется при нагреве «Alex» капсулированного нитротриазолоном (1485 кал/г), и хотя расчеты доказывают наличие максимального выигрыша по тепловой добавке для «Alex» покрытого вторбутилнитротриазолоном – $\Delta Q = 214$ кал/г, все покрытия можно считать эффективными.

В энергетических композициях также лучше всего зарекомендовал себя Alex-sBu (таблица 3). По количеству выделившегося тепла, эта система превзошла остальные.

Таблица 3 – Параметры ΣQ, V_{max} и T_{но} композиций покрытого наноалюминия со связующим

Образец	ΣQ, кал/г	V _{max} , кал·г ⁻¹ ·с ⁻¹	<i>Т_{но},</i> ⁰С
Связующее	920	2,1	-
Alex	1237	5,1	570
Alex-HTO	1386	4,4	550
Alex-iPr	1372	4,6	570
Alex-sBu	1780	2,5	610
Alex-Me	1365	3,8	550

Для всех ЭКС с производными нитротриазолона соответствующие параметры ΣQ выше, чем в контрольной – с исходным наноалюминием, и превышают расчетные значения на 315 ÷ 692 кал/г.

Таким образом, подводя итог можно сделать вывод о перспективности использования метилнитротриазолона, изопропилнитротриазолона и вторбутилнитротриазолона в качестве функциональных энергетических покрытий наноалюминия.

ЗАКЛЮЧЕНИЕ

Экспериментально исследованы микронные и нанопорошки алюминия, модифицированные N-замещенными-3-нитро-1,2,4триазол-5-ОНами и свойства высокоэнергетических систем, содержащих такие порошки.

Показано, что энергетические покрытия наноалюминия на основе нитротриазолона ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 Т.1 2016

влияют на кинетику высокоэнергетических материалов, увеличивая выделение тепла системой, повышая тем самым её эффективность.

СПИСОК ЛИТЕРАТУРЫ

1. Комарова, М. В. Исследование свойств высокоэнергетических композиций, содержащих наноалюминий, модифицированный производными нитротриазолов / М. В. Комарова, В. Н. Козырев, Н. В. Бояринова, Ю. В. Передерин, А. Г. Вакутин // Ползуновский вестник. – 2015. – № 4. – С. 102–105.

2. Комарова, М. В. Эффективность защитных покрытий наноразмерного алюминия в ЭКС с активным связующим / М. В. Комарова, В. Ф. Комаров, Н. В. Бычин // Ползуновский вестник. – 2013. – № 3. – С. 82–85.

3. Лернер, М. И. Пассивация наноразмерного порошка алюминия для применения в высокоэнергетических материалах / М. И. Лернер, Е. А. Глазков, А. Б. Ворожцов, Н. Г. Родкевич, С. А. Волков, А. Н. Иванов // Химическая физика. – 2015. – Т. 34, № 1. – С. 46–51.

4. Громов, А. А. Пассивирующие покрытия на частицах электровзрывных нанопорошков алюминия (обзор) / А. А. Громов, А. Ю. Строкова, А. А. Дитц // Химическая физика. – 2010. – Т. 29, № 2. – С. 77–91.

5. Dubois, Ch. In Situ Polimer Grafting on Ultrafine Aluminum Powders / Ch. Dubois, P. Brousseau, C. Roy, P. Lafleur // Energetic Materials. 35^{h} International Annual Conference of ICT. Germany. – 2004. – P. – 12 – 1 – 9.

6. Chen, Y. K. Organosilane assisted Encapsulation of Aluminum Particles with GAP Polymer / Y. K. Chen, S. Pisharath, S. C. Ng, H. G. Ang // Energetic Materials 41^{th} Inter. Annual Conf. of ICT. Karlsruhe. – 2010. – P. 23 – 1 – 12.

7. Ильин, А. П. Защитные покрытия и термическая устойчивость нанопорошков алюминия, полученных в условиях электрического взрыва / А. П. Ильин, Д. В. Тихонов, О. Б. Назаренко // Известия Томского политехнического университета. – 2011. – Т. 319, № 3. – С. 5–10.

Внергетические конденсированные системы. Краткий энциклопедический словарь / под ред.
П. Жукова. – М. : Янус. – 2009. – 316 с.

Комарова Марина Витальевна, к.ф.м.н., н.с. ИПХЭТ СО РАН, тел.: (3854)305971, e-mail: mv10mv@mail.ru.

Козырев Николай Владимирович, д.т.н., зав. лаб. ИПХЭТ СО РАН, тел.: (3854)305805, e-mail: kozyrev@ipcet.ru.

Суханов Геннадий Тимофеевич, д.х.н., зав. лаб. ИПХЭТ СО РАН, тел.: (3854)301976, e-mail: ipcet@mail.ru.

Крупнова Ирина Александровна, м.н.с., ИПХЭТ СО РАН, тел.: (3854)301976, еmail: ipcet@mail.ru.

Бычин Николай Валерьевич, с.н.с. ИПХЭТ СО РАН, тел.: (3854)301671, e-mail: ipcet@mail.ru.