СПОСОБ ОЦЕНКИ ЭКСПЛУАТАЦИОННОГО ПРОБЕГА ФРИКЦИОННЫХ КЛИНЬЕВ

А.В. Габец

Эксплуатационный этап жизненного цикла трехэлементной тележки грузового вагона модели 18—100 связан с ее тяжелонагруженными деталями, одной из которых является клин фрикционный механизма гашения колебаний вагона. Повышение качества служебных свойств его может быть достигнуто, в частности, совершенствованием материала, из которого он изготавливается. Решение этой задачи требует оценки износа рабочих поверхностей фрикционного клина в зависимости от пробега. Предлагается способ сравнительной оценки долговечности клина, изготовленного из разных материалов.

Ключевые слова: узел гашения колебаний, фрикционный клин, прогнозирование износа рабочих поверхностей клина.

На предприятии ВРК-2 получен значительный объем первичных данных об эксплуатации фрикционного узла [1]. Объем линейного износа на первом деповском ремонте, необходимый для построения прогнозной функции, представлен в таблице 1.

Таблица 1 – Объем линейного износа

Деталь	Материал	Износ, мм ³
Наклонная поверхность фрикционного клина	20ГЛ	9016
Вертикальная поверхность фрикционного клина	20ГЛ	27165
Фрикционная планка	30ХГСА	45328
Наклонная поверхность надрессорной балки	20ГЛ	23559

Приведенные первичные данные позволяют построить прогнозную модель, ориентированную на оценку эксплуатационного пробега фрикционных клиньев, изготовленных из разных материалов.

Прогнозирование основывается на предположении, что процесс изменения интенсивности износа i представляет собой сочетание двух составляющих – регулярной и случайной $i(s) = f(p,s) + \eta(s)$ [2]. Считаем, что f(p,s) (тренд) есть гладкая функция с конечным вектором параметров p, которые сохраняют свои значения в области ее опре-

деления; $\eta(s)$ – некоррелированный случайный процесс с нулевым математическим ожиданием. Вид и границы применения f(p,s) определяются логикой и физикой рассматриваемого процесса.

На рисунке 1 представлен вид характерной закономерности интенсивности износа трущихся деталей от пробега (времени эксплуатации) [3].

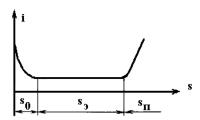


Рисунок 1 – Зависимость износа от пробега

Значения i на интервале s_0 соответствуют периоду приработки поверхностей, начиная с точки $s_{_{\Pi}}$ — выходу детали за допустимые параметры, интервал $s_{_{3}}$ характеризует эксплуатационный период. На первом деповском ремонте, для которого пробег соответствует $s_{_{\Pi}}$ = $16\cdot 10^4$ км, фрикционный клин, как правило, подлежит замене. Это дает основание считать, что $i(s_{_{\Pi}})$ находится в окрестности предельной точки $s_{_{\Pi}}$.

Примем следующий вид функции интенсивности износа: $i(s) = a \cdot \exp\left(b \cdot (s+c)^2\right) + d$ с областью определения $[0; \mathbf{s}_{_{\Pi}} + \delta]$, где δ –

значение, позволяющее визуально фиксировать нарастание интенсивности износа поверхностей. Вид функции, заданной таблично, после подбора области определения и начальных значений вектора параметров p = (0,1; 0,1; 5; -8,76) приведен на рисунке 2.

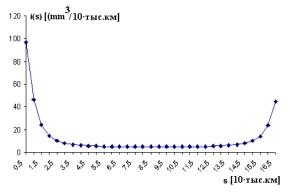


Рисунок 2 – Вид прогнозной функции i(s)

Идентификация p может быть получена сравнением объема линейного износа V после двукратного численного интегрирования i(s) с данными таблицы 1.

Табличное задание функции износа

$$I(s) = \int\limits_0^s i(s) ds$$
 , представленной на рисунке 3,

получено численным интегрированием i(s) методом трапеций. Интегрирование по всей области определения дает значение

$$V = \int\limits_{0}^{16} I(s) ds$$
 =168 мм 3 и требует итеративного

подбора вектора параметров. Окончательное значение его компонент для наклонной поверхности фрикционного клина в соответствии с таблицей 1 $V_{_{\rm HII}}=9016$ мм 3 достигается, например, при $p_{_{_{\it HII}}}=(0,33;\ 0,16;\ 12,08;\ -8,41).$ Аналогично определяются начальные приближения векторов параметров функций прогнозирования для остальных строк таблицы 1.

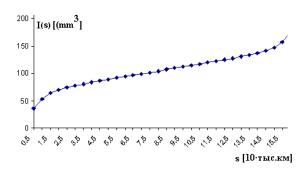


Рисунок 3 – Функция I(s)

Общим показателем износа двух пар поверхностей трения служит завышение/занижение δ [4].

$$\delta = \frac{(m_1 + m_2) \cdot \cos \beta + (n_1 + n_2) \cdot \sin \alpha}{\sin(\alpha + \beta)}$$

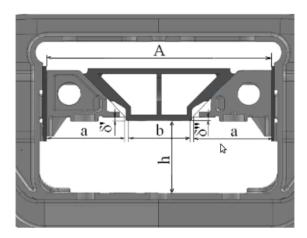


Рисунок 4 – Положение фрикционных клиньев

Здесь $\alpha=45^\circ$; $\beta=3^\circ$; m_1,m_2,n_1,n_2 , мм — линейный износ пар трения, который может быть вычислен для каждого значения функций прогнозирования и площадей соответствующих поверхностей.

Для исследования сравнительной износостойкости материалов, используемых для изготовления клиньев, проведен ряд триботехнических исследований [5]. В таблицах 2, 3 представлены используемые далее результаты этих испытаний.

Таблица 2 – Объем износа в паре «клинбалка»

Фрикционный клин		Надрессорная балка	
Материал	Объем износа, мм ³	Материал	Объем износа, мм ³
20ГЛ	20,5	20ГЛ	39,6
20ГЛ	20,5	20ГЛ(t)	30,7
C435	135,4	20ГЛ	5,1
C435	93,2	20ГЛ(t)	3,8
ЧМН35М	89,2	20ГЛ	15,3
ЧМН35М	83,8	20ГЛ(t)	26,7

Таблица 3 – Объем износа в паре «клинпланка»

Фрикционный клин		Фрикционная планка	
Материал	Объем износа, мм ³	Материал	Объем износа, мм ³
20ГЛ	33,2	30ХГСА	30,6
20ГЛ	29,4	25X	20,4
C435	135,1	30ХГСА	15,3
C435	52,7	25X	2,6
ЧМН35М	68,9	30ХГСА	6,4
ЧМН35М	74,3	25X	2,6

Испытания для каждой пары трения проводились в одинаковых условиях, которые соответствовали условиям эксплуатации [5].

Зная площади поверхностей пар трения в натурном эксперименте, можно определить величины m_1, m_2, n_1, n_2 для оценки величины изменения соответствующего завышения клина δ_{n_0} . Линейность I(s) на эксплуатационном участке определяет пропорциональную зависимость величин приращения завышения клина, эксплуатационного пробега s_3 , изменения завышения клина в эксперименте δ_{n_0} и соответствующего ему «пробега» в эксперименте (164 км). Прогнозные оценки эксплуатационного пробега клиньев приведены в таблице 4.

Таблица 4 – Оценки эксплуатационного пробега клиньев.

Материал			Оценка пробега,
Клин	Балка	Планка	10·тыс. км
20ГЛ	20ГЛ	30ХГСА	16
20ГЛ	20ГЛ(t)	25X	13
C435	20ГЛ	30ХГСА	43
C435	20ГЛ(t)	25X	18
ЧМН-35М	20ГЛ	30ХГСА	23
ЧМН-35М	20ГЛ(t)	25X	24

выводы

- 1. Сравнительная оценка эксплуатационного пробега клиньев делает чугун предпочтительным для их изготовления.
- 2. Предложенная методика прогнозирования при наличии эксплуатационной статистики может быть использована для оценки износа других пар трения.
- 3. Целесообразно подтвердить адекватность методики пробеговыми испытаниями.

СПИСОК ЛИТЕРАТУРЫ

- 1. Габец, А. В. Управление износостойкостью отечественных узлов и деталей подвижного состава: монография / А. В. Габец, А. М. Марков, Д. А. Габец, Е. О. Чертовских. Барнаул: Изд-во АлтГТУ, 2016. 213 с.
- 2. Теория прогнозирования и принятия решений: учеб. пособие / под ред. С. А. Саркисяна. М.: «Высш. школа», 1977. 351 с. с ил.
- 3. Герасимов, В. С. Технология вагоностроения и ремонта вагонов: учебник для вузов / В. С. Герасимов, И. Ф. Скиба, Б. М. Кернич и др.; под ред. В. С. Герасимова. 2-е изд., перераб. и доп. М.: Транспорт, 1988. 381 с.
- 4. Габец, А. В. Оценка износа фрикционного клина узла гашения колебаний тележки грузового вагона / А. В. Габец, И. В. Лёвкин, М. В. Сапетов, А. В. Семёнов // Ползуновский вестник. 2015. № 4, Т. 1. С. 16—19.
- 5. Габец, А. В. Совершенствование фрикционных клиньев тележки грузового вагона: монография / А. В. Габец. Барнаул: Изд-во АлтГТУ, 2016. 267 с.

Габец Александр Валерьевич, к.т.н., директор по развитию, руководитель научно-исследовательского сектора ООО «АСЛЗ», e-mail: gabeca @mail.ru.