ТЕХНОЛОГИЯ ДОБЫЧИ ВОЛЬФРАМА: СОВРЕМЕННОЕ СОСТОЯНИЕ ТЕХНОЛОГИЙ

Р.И. Крайденко, Ю.В. Передерин, Д.С. Филатов, А.Б. Манучарянц, А.Г. Карпов, М.С. Василишин

Проведены исследования современных научно-технических и технологических достижений в области добычи вольфрамсодержащих веществ, обогащения и доведения до товарного продукта. В работе отражены сравнительные характеристики различных технологий по критериям безопасности, как для обслуживающего персонала, так и для окружающей среды в целом.

Ключевые слова: вольфрам, флотация, ионный обмен, технология, выщелачивание, обогащение.

ВВЕДЕНИЕ

Увеличение спроса на вольфрамсодержащие товарные продукты за последние годы и как следствие кратность увеличения цен на мировом рынке (рисунок 1) [1] послужили толчком развития рассматриваемой отрасли в различных странах мира. В последние 20 лет наиболее интенсивно разработки велись и ведутся лидерами в этой области: в РФ [2-36] и КНР [37] (65 и 64 защищенных патента соответственно). Со значительным отрывом от лидеров (менее четырех патентов в каждой стране) изыскания в области получения вольфрамсодержащего товарного продукта проводились в Японии [38], США [39], Канаде [40], Корее [41] и в странах Европы (Германия [42], Бельгия [43] и др. [44]). Исследованиями затронуты практически все стадии доведения вольфрамсодержащих материалов до товарного продукта, а именно: физическое обогащение (флотация, магнитная сепарация и т.д.); выщелачивание (кислотное и щелочное); гидрометаллургические способы (экстракция, ионный обмен, осаждение); получение паравольфрамата аммония.

В целом все эти стадии объединяются в две последовательные стадии: физическое обогащение и химические превращения.

Наблюдаемая в технологиях тенденция снижения содержания вольфрама в исходном сырье вызывает необходимость ввода в эксплуатацию законсервированных отвалов обогатительных комбинатов даже с минимальным содержанием целевого продукта (менее 1 %). Новые подходы по эффективному использованию природных ресурсов требуют введения технологий с более глубоким извлечением вольфрама. Наиболее перспективными направлениями физического обога-

щения вольфрамсодержащего сырья являются флотация, магнитная сепарация и гравитационное обогащение.

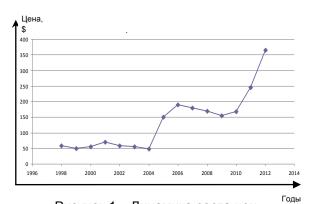


Рисунок 1 – Динамика роста цен на вольфрам, долл./т WO₃

РИДАТОПФ

Различными исследованиями показано, что наиболее эффективным способом флотации является технология, в которой, перед введением жидкого стекла в пульпу вводится сульфид натрия, а перед обработкой сульфгидральным собирателем вводится азотсодержащий реагент (бенз-1,3-тиазолил-2)метилсульфонилуксусной кислоты в массовом соотношении с сульфгидральным собирателем 1:(15-75) [2]. Подготавливается жирнокислотный собиратель к флотации несульфидных руд: готовится раствор едкого натра, в него вводится жирная кислота с окисью металла, обладающего амфотерными свойствами. При этом их перемешивание осуществляют при соотношении 1,005:0,005:5 в течение 25÷30 мин при температуре 40÷50 °С [3]. С целью повышения извлечения в вольфрамсодержащий пенный продукт при кондицио-

нировании дополнительно вводят N.N-бис-(2оксиэтил)-3-аминопропин-1 перед сульфгидрильным собирателем и в массовом соотношении с ним (1:160)÷(1:80) [4]. С целью повышения селективности разделения сульфидных и вольфрамовых минералов при одновременном снижении потерь с коллективным сульфидным концентратом в качестве дополни-(бенз-1.3тельного собирателя вводится тиазолил-2)-тиоуксусная кислота [5], либо (5амино-1,3,4-триазолил-2)-метилсульфонилуксусная кислота в массовом соотношении с сульфгидрильным собирателем от 1:75 до 1:19 [6]. Более эффективных технологий в области флотации пока не обнаружено.

МАГНИТНАЯ СЕПАРАЦИЯ И ГРАВИТАЦИОННОЕ ОБОГАЩЕНИЕ

В технологии с использованием магнитной сепарации [7], включающей разделение сухих отходов при прохождении их по верхней ленте нижнего транспортера в дискретном магнитном поле, создаваемом системой постоянных магнитов с чередующимися полюсами и воздействующем на отходы со стороны нижней ленты верхнего транспортера, осуществляется перенос магнитной фракции на нижнюю ленту верхнего транспортера и последующее перемещение разделенных фракций в приемники. Данная технология отличается от других тем, что с целью повышения эффективности сепарации отходов с размерами частиц 0,08÷0,20 мм при отклонении высоты слоя отходов от номинальной, постоянные магниты в системе располагают с межполюсным шагом 6÷8 мм. При изменении высоты слоя отходов по сравнению с номинальной, напряженность магнитного поля на поверхности нижней ленты верхнего транспортера корректируют в пределах 22÷28 кА/м изменением расстояния между магнитами и их полюсными наконечниками.

Два вышеупомянутых способа обогащения минерального сырья отдельно используются редко. Комплексных подход с использованием доступных методов обогащения является экономически более приемлемым и чаще используемым [8, 9].

Указанные технологии физического обогащения минерального и техногенного вольфрамсодержащего сырья являются основными, реализуемыми на практике, и характеризуют основные тенденции их дальнейшего развития. В ближайшее время следует ожидать только усовершенствования существующих технологий.

ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ВОЛЬФРАМСОДЕРЖАЩЕГО СЫРЬЯ

Химические превращения вольфрамсодержащего сырья являются одной из заключительных стадий получения товарного продукта соответствующего технологического цикла.

Тенденция химического передела направлена в сторону перехода к производству с минимальным количеством промышленных отходов, в том числе и жидких (кислых сточных ввод), так как на практике преимущество отдается технологиям, с помощью которых осуществляет наиболее эффективное и бережное природопользование. Достигается это с помощью отказа от кислотного выщелачивания и вскрытия сырья с помощью щелочных реагентов: NaOH [10-13], Na(K)CO₃ [14-20]. При этом способ автоклавного содового выщелачивания [21-25] отличается более низкими температурами процесса, по сравнению с технологиями спекания со щелочными реагентами и восстановления с коксом. Предлагается так же и вскрытие вольфорсодержащего сырья и с помощью фторирования [26, 27].

Для выделения вольфрама из продуктивных растворов предлагаются как методы экстракционного выделения вольфрама [28, 29], так и с помощью сорбции его на анионит. В качестве сорбента предлагается анионит марки АМ [30, 31], при этом существует необходимость проводить подкисление раствора, что приводит к потерям карбонат иона и образованию кислых сточных отходов. Так же предлагается использовать для сорбции вольфрама бентонитовую глину [32] и костный уголь [33, 34], но данные способы относятся больше к очистке вод от вольфрама и не имеют промышленного значения.

Одна из технологий переработки вольфрамсодержащих отходов металлургической промышленности [35] предполагает извлечение вольфрама в раствор с использованием автоклавного содового выщелачивания (АСВ). Последующая переработка вольфрамсодержащего раствора подразумевает использование процесса ионообмена на высокоосновных анионитах [36].

Для переработки вольфрамсодержащих растворов, полученных с помощью АСВ, лучшим способом является ионный обмен с помощью высокоосновных анионитов, так как существует возможность регенерации вскрывающего реагента и отсутствуют сбросные растворы, так как исходный раствор не подвергается нейтрализации с помощью кислот. Для проведения ионного обмена, так же как и

для экстракции, не требуется дополнительного нагрева смеси реагентов. При этом, в отличие от экстракции, время проведения реакции ионного обмена существенно больше, так как требуется длительный контакт анионита с раствором. Технологические показатели основных способов вскрытия сырья и химических превращений представлены в таб-

лицах 1 и 2. Сравнение данных таблиц 1 и 2 позволяет сделать вывод о преимуществе использования АСВ: высокая безопасность; относительно высокая степень вскрытия; относительно невысокая температура всех стадий процесса; возможность регенерации вскрывающего реагента; замкнутый технологический цикл (отсутствие сточных вод).

Таблица 1 – Сравнение технологических показателей различных способов вскрытия вольфрамсодержащего сырья

	Температура процесса, °С	Избыток вскрывающего реагента от стехиометрического, %	Оборудование	Класс опасности	Степень вскрытия
Спекание с Na₂CO₃	800–1000	10–15	Трубчатая вращающаяся печь	3	99,5
Кислотное выщелачивание	100–110	250–300	Агитатор	2	95
Выщелачивание NaOH	110–120	50	Агитатор	2	98–99
Электролитическое разложение	1400–1500	_	Дуговая рудно- термическая печь	ермическая –	
Спекание с Na ₂ SO ₄	650–700	200–300	Трубчатая вращающаяся печь	4	93
Выщелачивание NaF и NH₄F	200	150–170	Автоклав 2		98–99
Автоклавное содовое выщелачивание	200–225	250–450	Автоклав	3	98

Таблица 2 – Сравнение показателей способов переработки вольфрамсодержащих растворов

	Возможность регенерации	Сбросные растворы	Время реакции	Температура процесса, °С	Степень извлечения
Осаждение шеелита	Нет	Кислые сточные воды	Средний контакт	80–90	99–99,5
Экстракция	Нет	Кислые сточные воды, примеси аминов, высших спиртов и керосина	Короткий контакт	Комнатная температура	96
Ионный обмен с низкоосновными анионитами	Нет	Кислые сточные воды	Длительный контакт	Комнатная температура	97
Ионный обмен с высокоосновными анионитами	Есть	Нет	Длительный контакт	Комнатная температура	97

ЗАКЛЮЧЕНИЕ

Основными научно-техническими и технологическими тенденциями в развитии современных технологий в области добычи

вольфрамсодержащих веществ, обогащения и доведения до товарного продукта являются:

– обогащение исходного минерального и техногенного сырья (флотация, магнитная сепарация, гравитационное обогащение);

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 Т.2 2015

Р.И. КРАЙДЕНКО, Ю.В. ПЕРЕДЕРИН, Д.С. ФИЛАТОВ, А.Б. МАНУЧАРЯНЦ, А.Г. КАРПОВ, М.С. ВАСИЛИШИН

- химические превращения обогащенного сырья (электролитическое разложение, кислотное выщелачивание, щелочное выщелачивание, спекание, фторвыщелачивание, автоклавное содовое выщелачивание);
- переработка рабочих растворов с целью получения товарного продукта (осаждение, экстракция, ионный обмен с низкоосновными анионитами, ионный обмен с высокоосновынми анионитами.

На основе проведенных исследований можно сделать вывод о том, что современная технология получения товарного вольфрамсодержащего продукта должна включать в себя комплексное обогащение исходного сырья, автоклавное содовое выщелачивание с последующим ионным обменом с использованием высокоосновных анионитов.

Работа выполнена при финансовой поддержке Правительством Российской Федерации (Минобрнауки России), договор № 02.G25.31.0118.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сайт: http://www.cmmarket.ru/.
- 2. Пат. 2034068 РФ, С1 МПК 6 С22В34/36, В03D1/01. Способ извлечения сульфидов из вольфрамсодержащих руд / ИрИОХ СО РАН. №5044039/02; заявлено 22.07.91; опубл. 30.04. 95.
- 3. Пат. 2234984 РФ, C2 МПК 7 В03D1/001, В03D1/008 В03D101:02, В03D103:04. Способ подготовки жирно-кислотного собирателя к флотации несульфидных руд / Читинский государственный технический университет. №2002111938/03; заявлено 06.05.2002; опубл. 27.08.2004.
- 4. Пат. 2031733 РФ, С1 МПК 6 В03D1/01. Способ обогащения шеелит-сульфидных руд / Иркутский институт органической химии СО РАН. №5050110/03; заявлено 30.06.1992; опубл. 27.03.1995.
- 5. Пат. 2031731 РФ, С1 МПК 6 В03D1/01. Способ извлечения сульфидов из вольфрамсодержащих руд / Иркутский институт органической химии СО РАН. №5026162/03; заявлено 08.07.1991; опубл. 27.03.1995.
- 6. Пат. 2031732 РФ, Способ извлечения сульфидов из вольфрамсодержащих руд / Иркутский институт органической химии СО РАН. №5026162/03; заявлено 08.07.1991; опубл. 27.03.1995.
- 7. Пат. 2046670 РФ, Способ магнитной сепарации пылевидных слабомагнитных вольфрамсодержащих отходов / Курганский государственный педагогический институт. №5028820/03; заявлено 16.01.1992; опубл. 27.10.1995.
- 8. Пат. 2403296 РФ, Способ комплексной переработки лежалых хвостов обогащения вольфрамсодержащих руд / ООО "ИНТЕГРА РУ". №2009148351/02; заявлено 25.12.2009; опубл. 10.11.2010.
- 9. Пат. 2424333 РФ, Способ комплексной переработки хвостов обогащения вольфрамсодер-

- жащих руд / ООО "ИНТЕГРА РУ". №2010134254/02; заявлено 18.08.2010; опубл. 20.07.2011.
- 10. Пат. 2506330 РФ, Способ вскрытия вольфрамитовых концентратов / НИТУ "МИСиС". №2012149783/02; заявлено 22.11.2012; опубл. 10.02.2014.
- 11. Пат. 2149200 РФ, Способ гидрометаллургической переработки вольфрамовых концентратов / ОАО Забайкальский горно-обогатительный комбинат. Опубликовано: 20.05.2000.
- 12. Пат. SU1804129. Способ извлечения вольфрама из пылевидных отходов от заточки твердосплавного инструмента / Дорофеев И. А., Булыжев Е. М., Тарасов И. Н., Письменко В. Т., Вельмисов П. А., Богданов В. В., Михайлов Н. Д. Опубликовано: 27.03.1996.
- 13. Пат. 2465357 РФ, Способ переработки вольфрамитового концентрата. ИПХЭТ СО РАН. Опубликовано: 27.10.2012.
- 14. Пат. 2496896 РФ, Способ вскрытия шеелитовых концентратов / НИТУ "МИСиС". Опубликовано: 27.10.2013.
- 15. Пат. 2102512 РФ, Способ гидрометаллургического разложения упорных вольфрамитовых концентратов / Скопинское AOOT "Металлург". Опубликовано: 20.01.1998.
- 16. Пат. 2293132 РФ, Способ переработки вольфрамитового концентрата / ГУ ИМЕТ УрО РАН, ЗАО Научно-производственное предприятие "Редмет". Опубликовано: 10.02.2007.
- 17. Пат. 2094511 РФ, Способ переработки вольфрамитового концентрата / Каминский Ю. Д. Опубликовано: 27.10.1997.
- 18. Пат. 2237739 РФ, Способ переработки смешанного вольфрамо-оловянного концентрата / ОрелГТУ. Опубликовано: 10.10.2004
- 19 Пат. 2221887 РФ, Способ переработки смешанных вольфрамооловянных концентратов / ОрелГТУ. Опубликовано: 20.01.2004.
- 20. Пат. 2273677 РФ, Способ переработки смешанных вольфрамо-оловянных концентратов / ОрелГТУ. Опубликовано: 10.04.2006.
- 21. Пат. SU1520867. Способ переработки вольфрамитовых концентратов / МИСиС. Опубликовано: 10.06.1999.
- 22. Пат. 2031167 РФ, Способ переработки вольфрамо-молибденовых концентратов / ИНХ СО РАН. Опубликовано: 20.03.1995.
- 23. Пат. SU131626. Способ подготовки вольфрамитовых концентратов и промпродуктов к автоклавно-содовому выщелачиванию / МИСиС. Опубликовано: 10.06.1999.
- 24. Пат. 2504592 РФ, Способ получения вольфрамата натрия / ФГАОУ ВО НИ ТПУ. Опубликовано: 20.02.2014.
- 25. Пат. 2118668 РФ, Способ получения паравольфрамата аммония / Веревкин Георгий Васильевич, Кулмухамедов Гани Кунирбаевич. Опубликовано: 10.09.1998.
- 26. Пат. SU1624923. Способ переработки вольфрамсодержащего сырья / ИХ ДВО РАН. Опубликовано: 27.08.1999.
 - 27. Пат. 2142656 РФ, Способ переработки от-

- ходов торированного вольфрама / ФГАОУ ВО НИ ТПУ. Опубликовано: 10.12.1999.
- 28. Пат. 2102326 РФ, Способ переработки растворов вольфрамата натрия / ИОНХ РАН. Опубликовано: 20.01.1998.
- 29. Пат. 2170774 РФ, Способ экстракции молибдена (VI) и вольфрама (VI) из водных растворов / Воропанова Лидия Алексеевна. Опубликовано: 20.07.2001.
- 30. Пат. 2225891 РФ, Способ извлечения вольфрама (VI) из водного раствора / Воропанова Лидия Алексеевна. Опубликовано: 20.03.2004.
- 31. Пат. 2230129 РФ, Способ сорбции вольфрама (VI) / Воропанова Лидия Алексеевна. Опубликовано: 10.06.2004.
- 32. Пат. 2176677 РФ, Способ извлечения вольфрама (VI) из водного раствора / Воропанова Лидия Алексеевна. Опубликовано: 10.12.2001.
- 33. Пат. 2427657 РФ, Селективное извлечение вольфрама (VI) из растворов катионов тяжелых металлов / Воропанова Лидия Алексеевна. Опубликовано: 27.08.2011.
- 34. Пат. 2253687 РФ, Селективное извлечение вольфрама (VI). Воропанова Лидия Алексеевна. Опубликовано: 10.06.2005.
- 35. Дьяченко, А. Н. Автоклавное выщелачивание вольфрама из отходов оловянного производства с помощью карбоната натрия / А. Н. Дьяченко, А. П. Дугельный, Р. И. Крайденко, С. Н. Чегринцев // Известия Томского политехнического университета. 2013. Т. 322, № 3. С. 62–64.
- 36. Дьяченко, А. Н. Сорбционное извлечение вольфрама из раствора вольфрамата натрия / А. Н. Дьяченко, Р. И. Крайденко, С. Н. Чегринцев // Химия в интересах устойчивого развития. 2013. № 3. С. 345—348.
- 37. Пат. CN 1570161. Ионообменный процесс концентрированного раствора вольфрамата натрия / UNIV CENTRAL SOUTH. Опубликовано: 26.01.2005.
- 38. Пат. JP 2014073915. Метод получения оксида вольфрама и метод получения вольфрама / SUMITOMO ELECTRIC INDUSTRIES. Опубликовано: 24.04.2014
- 39. Пат. US 2011300040. Способ получения вольфрамата натрия, метод улавливания (выделения, концентрирования) вольфрама, аппарат ля получения вольфрамата натрия, способ получения водного раствора вольфрамата натрия / YAMAMOTO YOSHIHARU [JP]; SASAYA KAZUO [JP] и др. Опубликовано: 08.18.2011.

- 40. Пат. CA 2815708. Способ извлечения вольфрама из шеелита / UNIV CENTRAL SOUTH. Опубликовано: 28.06.2012.
- 41. Пат. KR 100191281. Метод удаления примесей из загрязнённого раствора, содержащего вольфрам / DAEGU TEC CO LTD [KR]. Опубликовано:15.06.1999.
- 42. Пат. DE 19724183. Получение чистых щелочных металлов или растворов вольфрамата аммония / STARCK H C GMBH CO KG. Опубликовано 25.03.1999
- 43. Пат. BE 1013558. Метод получения вольфрамового порошка / TMG TUNGSTEN MOLYBDENIUM GROUP. Опубликовано: 5.03.2002
- 44. Пат. EP 2412676. Способ получения вольфрамата натрия, метод улавливания (выделения, концентрирования) вольфрама, аппарат для получения вольфрамата натрия, способ получения водного раствора вольфрамата натрия / ALMT CORP [JP]; SUMITOMO ELEC HARDMETAL CORP [JP]; SUMITOMO ELECTRIC INDUSTRIES [JP]. Опубликовано: 01.02.2012.
- **Крайденко Р.И.** д.х.н., зав. кафедрой. ФГАОУ ВО НИ ТПУ, Россия, а. Томск, проспект Ленина, дом 30, 634050, Тел.: 8 (3822) 70-16-03, e-mail: kraydenko@tpu.ru.
- **Передерин Ю.В.** к.т.н., ассистент. Φ ГАОУ ВО НИ ТПУ, Россия, г. Томск, проспект Ленина, дом 30, 634050, e-mail: ipcet@yandex.ru.
- **Филатов Д.С.** к.т.н., лаборант. ФГАОУ ВО НИ ТПУ, Россия, г. Томск, проспект Ленина, дом 30, 634050, e-mail: ipcet@yandex.ru.
- **Манучарянц А.Б.** ч/совета директоров АО «Закаменск», Республика Бурятия, г.Закаменск, ул.Ленина, д.39, 671950, e-mail: martb1812 @gmail.com.
- **Карпов А.Г.** н.с. ИПХЭТ СО РАН, Россия, г. Бийск, ул. Социалистическая, 1, 659322, e-mail: ipcet@mail.ru.
- **Василишин М.С.** к.т.н., доцент, зав. лабораторией ИПХЭТ СО РАН, Россия, г. Бийск, ул. Социалистическая, 1, 659322, e-mail: ipcet@mail.ru.