СИНТЕЗ СХЕМ ПРЕДВАРИТЕЛЬНОГО РАСПРЕДЕЛЕНИЯ КЛЮЧЕЙ С ИСПОЛЬЗОВАНИЕМ ВЗАИМНО ДОПОЛНЯЮЩИХ УСЛОВИЙ ИХ КОРРЕКТНОСТИ

А.В. Затей

На основе вероятностных оценок и компьютерных экспериментов с применением вероятностных алгоритмов синтеза схем предварительного распределения ключей в компьютерной сети показано, что сочетанием условий корректности двух известных таких схем (KDP, Key Distribution Pattern и HARPS, Hashed Random Preloaded Subset Key Distribution) возможно повышение информационной скорости комбинированной схемы (HAKDP, Hashed Key Distribution Pattern) по сравнению с информационной скоростью этих схем.

Ключевые слова: компьютерная сеть, системный ключ, предварительное распределение ключей, информационная скорость.

ВВЕДЕНИЕ

Схемы предварительного распределения ключей в компьютерной сети предусматривают формирование доверенным центром на основе исходной секретной системной ключевой информации пакетов одинаковых по объему секретных единиц ключевой информации для каждого участника сети и пересылка этих пакетов соответствующим участникам. При этом состав этих пакетов и, возможно, некоторая дополнительная несекретная информация о них публикуется на общедоступном сервере. Полученная каждым участником секретная ключевая информация должна быть достаточной для вычисления каждым из них рабочих ключей для связи с участниками той или иной группы из числа групп, в которые он входит и состав пакетов секретной информации которых ему известен. Состав самих групп также общеизвестен и публикуется. Такие группы называются привилегированными. С другой стороны, имеются так называемые отчужденные группы участников. В правильно построенной схеме участники такой группы на основе объединения полученных каждым из ее участников пакетов секретной информации не должны быть в состоянии вычислить рабочий ключ никакой привилегированной группы. Это гарантируется условием корректности схемы.

Схемы предварительного распределения ключей характеризуются информационной скоростью – величиной, обратной к суммарной длине секретных пакетов, направляемых участникам сети.

Чем меньше секретной информации передаётся по закрытым каналам, тем больше

информационная скорость. Информационная скорость схемы — основной параметр ее эффективности, чем она больше, тем эффективнее схема.

Существует множество подходов к предварительному распределению. R. Blom и D. Stinson [1, 2, 3, 4] предложили алгебраические методы. P. Erdös [5, 6] изучал так называемые схемы предварительного распределения ключей, то есть, семейства подмножеств с парными или в более общем случае r-мерными пересечениями, являющимися семействами Шпернера. Вероятностные алгоритмы для синтеза схем KDP Distribution Pattern) были предложены в [7]. Все эти методы исключительно безопасны. В статьях [8, 9, 10, 11, 12] было предложено несколько эффективных методов для предварительного распределения. Благодаря существенному снижению объема распределяемой секретной информации эти методы наиболее подходят для сетей мобильных устройств.

В настоящей работе показана возможность построения схем предварительного распределения ключей с условием корректности, являющимся дизъюнкцией условий корректности двух других схем как взаимно дополняющих: новая схема корректна, если она удовлетворяет хотя бы одному из этих условий. При этом с использованием вероятностных оценок и компьютерных экспериментов на основе вероятностных алгоритмов синтеза схем показана возможность повышения информационной скорости схемы предварительного распределения ключей с комбинированным условием корректности.

СХЕМЫ ПРЕДВАРИТЕЛЬНОГО РАСПРЕДЕЛЕНИЯ КЛЮЧЕЙ С ХЕШИРОВАНИЕМ

В настоящей работе изучаются схемы предварительного распределения а системных ключей с хешированием HAKDP(P,F,L)(n,q)(Hashed Key Distribution Pattern) в компьютерной сети из *п* абонентов, в которых допускаются коалиции F участников из множества F "отчужденных" коалиций и группы Р участников из множества Р привилегированных групп участников. Ниже будем интерпретировать такие коалиции и группы как множества номеров входящих в них абонентов сети - подмножества множества **U**= $\{1,2,..,n\}$. Для получения такой схемы из исходного множества \mathbf{K} , $|\mathbf{K}| = q$, системных ключей (двоичных наборов фиксированной длины) образуется n подмножеств Кі, і=1,...,п, системных ключей, назначаемых *i*-му участнику. Для каждого участника определяется и публикуется на сервере пара числовых наборов (S_i , D_i). Наборы S_i содержат номера системных ключей из подмножеств K_i , а наборы D_i содержат числа D_i (s), $0 \le D_i \le L$, применений к этим ключам криптографической бесключевой хеш-функции $h:\{0,1\}^k \to \{0,1\}^k$. Получаемые в результате возможно многократного применения к системному ключу хешфункции образы системных ключей передаются і-му участнику по закрытому каналу.

Информационная скорость схемы предварительного распределения ключей при этом определяется как величина

$$ho = 1/\sum_{i=1}^{n} |K_i|$$
, обратная суммарному количе-

ству образов системных ключей, пересылаемых по закрытым каналам [3].

Для вычисления общего ключа привилегированной группы P каждый её участник (i-й абонент сети) должен применить функцию хеширования к полученному образу s-го системного ключа $\max_{j\in P} D_j(s) - D_i(s)$ раз.

Pабочий ключ, вычисляемый каждым участником группы P по образам системных ключей с номерами из множества $\bigcap_{i \in P} S_i$, имеющихся у каждого такого участника, не должен вычисляться участниками отчужденной группы на основе объединения полученных ими образов системных ключей, т. е. по образам ключей из множества $\bigcup_{i \in F} S_i$.

Таким образом, указанные числовые наборы должны соответствовать предикату:

$$\forall P \in \mathbf{P}, F \in \mathbf{F}, P \cap F = \varnothing : \bigcap_{i \in P} S_i \neq \varnothing \land \land \neg \{ [\bigcap_{i \in P} S_i \subseteq \bigcup_{j \in F} S_j] \land \land \land [\forall s \in \bigcap_{i \in P} S_i \max_{i \in P} D_i(s) \ge \min_{j \in F} D_j(s)] \}.$$

$$(1)$$

Тогда, если применяется криптографическая хеш-функция, участники никакой "отчужденной" коалиции не могут вычислить общий ключ участников никакой привилегированной коалиции.

Изучаемые в работе $HAKDP(\mathbf{P},\mathbf{F},L)(n,q)$ -схемы, с одной стороны, являются обобщением $KDP(\mathbf{P},\mathbf{F})(n,q)$ -схем (Key Distribution Pattern) [1–4], в которых не применяется хеширование, и которые описываются наборами множеств S_i номеров системных ключей, соответствующих предикату:

$$\forall P \in \mathbf{P}, F \in \mathbf{F}, P \cap F = \emptyset : \bigcap_{i \in P} S_i \neq \emptyset \land$$

$$\land \neg [\bigcap_{i \in P} S_i \subseteq \bigcup_{i \in F} S_i]$$
(2)

с другой стороны, они являются специальным подклассом так называемых HARPS(n,q)-схем (HARPS-1) — Hashed Random Preloaded Subset Key Distribution) [6], в которых каждому участнику доставляются все системные ключи из множества \mathbf{K} ($\forall i \in P \cup F: S_i = \{1,...,q\}$) и предикат соответствия имеет более простой вид:

$$\forall P \in P, F \in F : P \cap F = \emptyset \land$$

$$\land \neg \{ [\forall s \max_{i \in P} D_i(s) \ge \min_{j \in F} D_j(s)]$$
(3)

Схемы, соответствующие предикату (2) впервые были описаны в работе [13]. В этой работе, как и в работе [7] они называются системами пересекающихся множеств (set intersection systems).

Неформальное пояснение понятия $HAKDP(\mathbf{P},\mathbf{F},L)(n,q)$ -схемы, представленное в [14] формализуем следующим определением.

Определение [15]. НАКDP(\mathbf{P},\mathbf{F},L)(n,q)-схемой, где \mathbf{P} и \mathbf{F} – это семейства подмножеств множества $\mathbf{U}=\{1,\ldots,n\}$, называется пара (\mathbf{K},\mathbf{D}) семейств $\mathbf{K}=\{K_1,\ldots,K_n\}$ подмножеств конечного множества \mathbf{K} из q элементов (системных ключей) и $\mathbf{D}=\{D_1,\ldots,D_n\}$ подмножеств множества $\{0,1,\ldots,L\}$, причем $|D_i|=|K_i|$ и элементы множеств D_i взаимно однозначно соответствуют элементам множеств K_i , $i=1,\ldots,n$, удовлетворяющая условию (1) где S_i (или S_i) наборы номеров элементов множества \mathbf{K} , образующих множество K_i (или K_i).

Представленные в этой формуле условия корректности $\mathsf{HAKDP}(\mathbf{P,F},L)(n,q)$ -схемы

1)
$$[\bigcap_{i \in P} S_i \nsubseteq \bigcup_{j \in F} S_j],$$

2) $[\exists s \in \bigcap_{j \in P} S_j : \\ : \max_{j \in P} D_j(s) < \min_{i \in F} D_i(s)]$

в (1) являются взаимно дополняющими: для корректности схемы (соответствия предикату (1)): достаточно выполнение хотя бы одного их них. Ниже будем называть первое из них КDP-условием, а второе — НА-условием. Этим обуславливается возможность сокращения как числа q= $|\mathbf{K}|$ распределяемых системных ключей, так и количества системных ключей, пересылаемых от доверенного центра участникам сети по защищенным каналам, то есть повышения информационной скорости системы предварительного распределения ключей.

Для синтеза схем предварительного распределения ключей наряду с детерминированными алгоритмами применяют вероятностные алгоритмы.

Так вероятностный метод синтеза KDP (**P,F**,n,q)-схем впервые был описан в работе [7].

В настоящей статье обоснован вероятностный алгоритм синтеза $HAKDP(\mathbf{P},\mathbf{F},L)(n,q)$ -схем с предварительной оценкой недостаточного и достаточного для его успешного завершения объемов q_0 и q ключевой информации — чисел системных ключей в исходном множестве \mathbf{K} .

Входом алгоритма являются числа $0.5 \le p \le 1, L, 0 \le L, L \in \mathbb{Z}$, а также множества Р и F привилегированных групп участников и отчуждённых коалиций F участников. Выходом - указанная в определении пара семейств, вычисленная с использованием рандомизированных процедур выбора множеств K_i , i = 1, ..., n. При вероятностном формировании каждого множества К, каждый элемент множества К включается в него с вероятностью р, а при формировании каждого множества Di его элементы выбираются из множества $\{0,...,L\}$ с равными вероятностями $1\setminus (L+1)$. Выбранная таким образом пара семейств (\tilde{K} ,**D**) проверяется на соответствие предикату (1). При положительном результате верификации она возвращается, а при отрицательном формируется сообщение о неуспехе генерации схемы. Естественным расширением данного алгоритма является его использование в цикле с повторением цикла при неуспехе.

Положим c=npq среднее значение $\sum_{i=1}^{n} K_i$ и ρ =1/c – среднее значение информационной

скорости $\mathsf{HAKDP}(\mathbf{P},\mathbf{F},L)(n,q)$ -схем, синтезируемых вероятностным методом.

Заметим, что при p=1 синтезированная алгоритмом схема не будет соответствовать KDP-условию (т.е. предикату (2)), а семейство \mathbf{D} будет HARPS(\mathbf{P},\mathbf{F},L)(n,q)-схемой, при L=0 она не будет соответствовать HA-условию (т.е. предикату (3)), а семейство \tilde{K} будет KDP(\mathbf{P},\mathbf{F})(n,q)-схемой. При других сочетаниях значений этих параметров, для успешного синтеза схемы достаточно соответствие тому или другому из этих условий (предикатов). В связи с этим и появляется возможность повышения информационной скорости схемы предварительного распределения ключей.

ОЦЕНКИ ОБЪЕМА КЛЮЧЕВОЙ ИНФОРМАЦИИ ДОСТАТОЧНОГО ДЛЯ УСПЕШНОГО СИНТЕЗА СХЕМЫ

По определению, паре $(\tilde{\mathbf{K}},\mathbf{D})$ взаимно однозначно соответствует пара семейств (\mathbf{S},\mathbf{D}) , где $\mathbf{S}=\{S_1,\dots,S_n\}$. Если мощности элементов множества \mathbf{P} равны g, а мощности элементов множества \mathbf{F} равны w, то $\mathsf{HAKDP}(\mathbf{P},\mathbf{F},L)(n,k)$ -схему будем обозначать $\mathsf{HAKDP}(g,w,L)(n,k)$.

Ясно, что имеется некоторое значение q, при котором $HAKDP(\mathbf{P}, \mathbf{F}, L)(n,q)$ -схема существует, а при меньшем значении $|\mathbf{K}| < q$ не существует. Практически найти эту точную нижнюю оценку и тем более построить схему не представляется возможным. В то же время при синтезе можно использовать верхнюю оценку для а. Ее можно получить, полагая, что все элементы множества Р содержат одинаковые количества элементов д (минимальная мощность элемента из этого множества). Аналогично элементы множества **F** содержат одинаковые количества элементов w (максимальная мошность элемента из этого множества). Далее, при вычислении верхней оценки мы полагаем, что неравенство в формуле (1) из определения должно выполняться не для некоторого элемента, а для всех элементов. То есть верхнюю оценку будем рассчитывать исходя из соответствия предикату

$$\forall P \in P, F \in F, P \cap F = \varnothing : \bigcap_{i \in P} S_i \neq \varnothing \land$$

$$\{ [\bigcap_{i \in P} S_i \nsubseteq \bigcup_{j \in F} S_j] \lor$$

$$\lor [\forall s \in \bigcap_{j \in P} S_j :$$

$$: \max_{j \in P} D_j(s) < \min_{i \in F} D_i(s)] \}$$

$$(4)$$

Пусть **P** — это семейство всех подмножеств множества **U** мощности g, **F** — семейство всех подмножеств множества **U** мощности w, причем $g+w \le n$.

СИНТЕЗ СХЕМ ПРЕДВАРИТЕЛЬНОГО РАСПРЕДЕЛЕНИЯ КЛЮЧЕЙ С ИСПОЛЬЗОВАНИЕМ ВЗАИМНО ДОПОЛНЯЮЩИХ УСЛОВИЙ ИХ КОРРЕКТНОСТИ

Число $q=|\mathbf{K}|$ ключей, где E – вероятность успешного синтеза схемы за одну итерацию алгоритма, является достаточным для удачного синтеза схемы:

$$q < \frac{\log\left((1-E) \cdot \frac{g!w!}{(n-g-w+1) \cdot \dots \cdot n}\right)}{\log\left(1-\left(p^{g}((1-p)^{w}+p^{w}\sum_{i=0}^{L}w^{-1}\frac{1}{L+1}\left(\frac{L-t}{L+1}\right)^{g+w+1}\right)\right)\right)}(5).$$

Ясно, что при меньшем, чем q количестве q исходных системных ключей потребуется большее количество итераций вероятностного алгоритма для синтеза схемы.

КОМПЬЮТЕРНЫЕ ЭКСПЕРИМЕНТЫ И ВЫВОДЫ

Целью данного раздела является экспериментальное подтверждение полученных выше оценок и положительного эффекта использования в вероятностном алгоритме двух взаимно дополняющих условий корректности схемы, описанных выше.

Зафиксируем параметры n (количество участников сети) и E = 0.5.

Рассмотрим результаты расчета оценок и компьютерных экспериментов для двух серий схем

- 1) HAKDP(3, w, 20)(16,q), w = 2,3 и
- 2) HAKDP(3, w, 0)(16, q), w = 2.3

при варьируемых параметрах р вероятностного алгоритма. Схемы второй серии соответствуют предикату (3), при p=1 схемы первой серии соответствуют предикату (2), при p<1 они соответствуют предикату (2) или предикату (3), т.е., по совокупности – предикату (1).

В таблице 1 для схем первой серии представлены значения q, полученные по формуле (5), q' — значение, которое удалось достигнуть экспериментально, в допустимые сроки по времени t<100 секунд. В таблице 2 представлены аналогичные результаты для экспериментов второй серии.

Данные таблицы показывают, что полученные аналитически оценки подтверждаются на практике, а именно, мы можем строить схемы с исходным количеством используемых системных ключей, меньшим, чем достаточное для построения схемы за одну итерацию вероятностного алгоритма количество q. При этом видно, что использование НА-условия в дополнение к KDP-условию влечет уменьшение достаточного q и экспериментально достигнутого q исходного количества системных ключей.

В таблице 3 для схем первой и второй серий представлены *c'=pnq'* – математические ожидания исходных количеств используемых системных ключей, образы которых направляются абонентам по закрытым каналам по

схеме, синтезированной вероятностным алгоритмом с использованием параметра q'.

Таблица 1 – Результаты синтеза для набора параметров первой серии

	W			
p	2		3	
	q	q'	q	q'
0,5	289	145	609	290
0,6	226	110	541	230
0,7	196	94	503	210
0,8	178	80	447	205
0,9	160	76	357	205
0,95	148	75	308	205
0,99	134	75	274	205
1	130	75	266	205

Таблица 2 – Результаты синтеза для набора параметров второй серии.

	W			
р	2		3	
	q	q'	q	q'
0,5	365	235	768	640
0,6	331	220	868	720
0,7	370	240	1295	1010
0,8	556	325	2927	2350
0,9	1562	790	16440	_
0,95	5309	2560	111800	_
0,99	117300	_	_	_
1	_	_	_	_

Таблица 3 — Математические ожидания количеств используемых системных ключей для серий экспериментов.

	W				
_	2		3		
p	c',	C',	C',	c',	
	(L=20)	(L=0)	(L=20)	(L=0)	
0,5	1160	1880	2320	5120	
0,6	1056	2112	2208	6912	
0,7	1053	2688	2352	11312	
0,8	1024	4160	2624	30080	
0,9	1095	11376	2952	_	
0,95	1140	38912	3116	_	
0,99	1188	_	3247	_	
1	1200	_	3280	_	

В таблице 4 представлены суммарные количества c' системных ключей, выбранных вероятностным алгоритмом синтеза НАКDP(g,w,n,q)-схем из исходного их количества q' для формирования их образов, направляемых абонентам по закрытым каналам, при успешном завершении компьютерных экспериментов по синтезу схем указанных двух серий.

Данные таблицы 4 соответствуют расчетным данным таблицы 3: реальное число

единиц отличается от ожидаемого не более, чем на десятки единиц. Данные в нижних строках совпадают, т. к. в соответствующих схемах каждому абоненту назначаются все q' единиц исходной ключевой информации.

Таблица 4 – Значения количеств используемых системных ключей при успешном завершении синтеза схем.

	W			
n	2		3	
p	C',	C',	c',	C',
	(L=20)	(L=0)	(L=20)	(L=0)
0,5	1199	1917	2372	5076
0,6	1077	2100	2198	6809
0,7	1058	2654	2334	11306
0,8	1028	4153	2662	22519
0,9	1103	11299	2969	_
0,95	1120	38835	3135	_
0,99	1143	_	3245	_
1	1200	1	3280	-

Сравнение данных, выделенных курсивом в столбцах для первой серии схем (L=20), с данными в нижней строке показывает положительный эффект (повышения информационной скорости) использования КDP-критерия (в дополнение к НА-критерию). Сравнение выделенных курсивом данных в соседних столбцах для первой (L=20) и второй (L=0) серий схем показывает положительный эффект использования НА-критерия (в дополнение с KDP-критерию).

В данной работе получены и подтверждены компьютерными экспериментами оценки q, количеств f системных ключей, образы которых распределяются абонентам сети, достаточных для синтеза схемы за практически приемлемое число итераций вероятностного алгоритма синтеза HAKDP(P,F,L)(n,q)-схем. С использованием этих оценок и вероятностного алгоритма синтеза таких схем подтверждён положительных эффект использования двух взаимно дополняющих условий их корректности, выражающийся в повышении информационной скорости схемы, синтезированной вероятностным алгоритмом и удовлетворяющей хотя бы одному условию, относительно информационной скорости схем, синтезированных вероятностным алгоритмом по соответствию конкретному из этих условий.

Работа выполнена при финансовой поддержке РФФИ, проект №14-01-00671a.

СПИСОК ЛИТЕРАТУРЫ

1. Blom, R. Nopublic key distribution / R. Blom // Advances in Cryptology. Proceedinge of EURUCRYPT'82. Plenum. New York. – 1983. – P. 231–236.

- 2. Blom, R. An optimal Class of Symmetric key Generation Systems / R. Blom // Advances in Cryptology: Proc. of Eurocrypt 84, Lecture notes in Computer Science, 209, Springer-Verlag. – 1984. – P. 335–338.
- 3. Stinson, D. R. On Some Methods for Unconditionally Secure Key. Distribution and Broadcast Encryption / D. R. Stinson // Designs, Codes and Cryptography, Kluwer Academic Publishers, Norwell, MA, USA, 1997.
- 4. Stinson, D. R. Cryptography: Theory and practice / D. R. Stinson // Third Edition, CRC Press, Boca Raton, Florida, 2006.
- 5. Erdös, P. Families of Finite Sets in which no Set is Covered by the Unuon of 2 Others / P. Erdös, P. Francl, Z. Füredi // Journal of Combinatorial Theory. Series A. 1982. Vol. 33. P. 158–166.
- 6. Erdös, P. Families of Finite Sets in which no Set is Covered by the Unuon of r Others / P. Erdös, P. Francl, Z. Füredi // Israel Journal of Mathematics. 1985. Vol. 51. P. 79–89.
- 7. Dyer, M. On key storage in secure networks / M. Dyer, T. Fenner, A. Frieze, A. Thomason // Journal of Cryptology. 1995. Vol. 8. P. 189–200.
- 8. Ramkumar M. Pre-Loaded Key Based Multicast and Broadcast Authentication in Mobile ad-Hoc Networks. / M. Ramkumar, N. Memon, R. Simha // Globecom-2003.
- 9. Leighton, L. Secret-Key Agreement with out Public-Key Cryptography / L. Leighton, S. Micali // Advances in Cryptology-CRYPTO-1993. 1994. P. 456–478.
- 10. Ramkumar, M. An efficient key predistribution scheme for ad hoc network security / M. Ramkumar, N. Memon // Selected Areas in Communications, IEEE Journal on. 2005. Vol. 23, Issue 3. P. 611–621.
- 11. Ramkumar, M. Broadcast Encryption Using Probablistic Key Distribution and Applications / M. Ramkumar // Journal of Computers. 2006. Vol. 1, № 3. P. 1–12.
- 12. Ramkumar, M. I-HARPS: an Efficient Key Pre-Distribution Scheme / M. Ramkumar // E-print Archive, Rep 138. 2005. P. 1–13.
- 13. Mitchell, C. J. Key storage in secure networks / C. J. Mitchell, F. C. Piper // Discrete Applied Mathematics. 1988. Vol. 21. P. 215–228.
- 14. Frolov, A. B. Non-Centralized Key Pre-Distribution in Computer Networks / A. B. Frolov, I. I. Shchurov // IEEE Proceedings of International Conference on Dependability of Computer Systems DepCos-RELCOMEX 2008, Szklarska Poreba, Poland, Computer Society Conference Publishing Services. Los Alamitos, California, Washington, Tokyo, 2008, P. 179–188.
- 15. Фролов, А.Б. Схемы предварительного распределения ключей допускающие коалиции / А.Б. Фролов, А.В. Затей // Вестник МЭИ. 2013. № 6. С. 166–172.
- 16. Щуров, И.И. Минимизация ключевого материала для построения безопасной сети / И.И.Щуров // Вестник МЭИ, Москва, Издательство МЭИ. 2006. № 6. С. 112–118.

Затей А.В. — аспирант кафедры математического моделирования Национального исследовательского университета МЭИ, тел. +79166838541, e-mail: zateyav@mpei.ru.