ИССЛЕДОВАНИЕ СКОРОСТИ ГОРЕНИЯ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ, СОДЕРЖАЩИХ МОДИФИЦИРОВАННЫЙ НАНОАЛЮМИНИЙ

М.В. Комарова, А.Б. Ворожцов, А.Г. Вакутин

Приведены результаты экспериментальных исследований линейной скорости горения металлизированных высокоэнергетических материалов при давлениях 0,1 МПа и 4 МПа, содержащих различные наноразмерные порошки металлов, в том числе модифицированный аминоуксусной кислотой наноалюминий марки «Alex». Предложен метод прогнозирования, основанный на термографических и термогравиметрических измерениях.

Ключевые слова: наноразмерные порошки металлов, высокоэнергетические материалы, скорость горения.

ВВЕДЕНИЕ

Преимущества использования в высокоэнергетических материалах (ВЭМ) наноалюминия вместо микроалюминия, а именно: увеличение скорости горения [1, 2] и ожидание уменьшения потерь основных энергетических характеристик при применении такого материала в составе высокоэнергетической системы [3] — могут быть сведены не только к нулю, но даже обусловить невозможность его использования.

Дело в том, что наноалюминий, обладая высокой удельной поверхностью, проявляет высокую химическую активность по отношению к другим компонентам энергетической конденсированной системы, что способствует выделению газов и внутри высокоэнергетического материала при его хранении, обуславливая трещинообразование, снижение физико-механических характеристик и несанкционированную поверхность горения при работе в составе ВЭМ. Снижения химической активности нанопорошков металлов можно достичь нанесением защитных слоёв (покрытий) на поверхность наночастиц [4].

Нами в [5, 6] экспериментально исследованы различные приёмы пассивации электровзрывного наноразмерного порошка алюминия с целью выяснения влияния наносимого покрытия на химическую совместимость с полимерным горючим связующим веществом (ГСВ), содержащим активный пластификатор – смесь нитроэфиров с нитроаминами. Показано, что наиболее эффективным способом защиты наноалюминия является обработка стабилизированного воздухом порошка спиртовым раствором аминоуксусной кислоты (глицина; G).

Измерение термодинамических параметров универсальными экспресс-методами оценки быстропротекающих реакций в конденсированных средах: дифференциального термического (ДТА) и термогравиметрического (ТГА) анализов, также показали преимущества Al(G) в энергетических композициях.

Тем не менее, для принятия окончательного решения о возможности применения наноразмерного алюминия в составе высокоэнергетической композиции необходимо не только получить и оценить кинетическую информацию, решить проблемы химической совместимости компонентов и стойкости композиций, но и определить, насколько модификация поверхности глицином влияет на одну из основных характеристик применимости ВЭМ — скорость горения.

В настоящей работе приводятся результаты экспериментального исследования модифицированного аминоуксусной кислотой нанопорошка алюминия марки «Alex», в том числе с добавками других нанометаллов (железа, никеля, цинка и титана).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ОБСУЖДЕНИЕ

Скорость горения при давлении 0,1 МПа определяли ионизационным методом, сущность которого заключается в измерении времени прохождения фронтом горения фиксированной базы — участка заряда между двумя и более датчиками. Принцип измерения основан на превращении исходной смеси — диэлектрика в токопроводящую систему — ионизированные продукты горения. Данный метод характеризует высокая точность, он пригоден для определения скорости горения

ИССЛЕДОВАНИЕ СКОРОСТИ ГОРЕНИЯ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МКТЕРИАЛОВ, СОДЕРЖАЩИХ МОДИФИЦИРОВАННЫЙ НАНОАЛЮМИНИЙ

составов, находящихся в порошкообразном, литом или прессованном виде.

Общая длина базы в экспериментах составляла $12 \cdot 10^{-3}$ м. В заряде прокалывались отверстия для размещения ионизационных датчиков (расстояние от воспламенителя до первого датчика не менее $5 \cdot 10^{-3}$ м); после этого сборка помещалась на стенд для определения скорости горения, где на заряд устанавливался воспламенитель.

После сжигания образца обработка полученной информации проводилась средствами программного обеспечения цифрового осциллографа. Погрешность измерений составляла ≤ 1 %.

Скорость горения при давлении 4 МПа определяли в приборе постоянного давления в атмосфере азота. Изготовление модельных образцов осуществлялось путём перемешивания нанопорошка со связующим с последующим введением в состав октогена. Изготавливались цилиндрические заряды высотой 20·10⁻³ м и диаметром 9·10⁻³ м, которые помещались в полиэтиленовую оболочку.

Компонентный состав модельных зарядов включал: октоген — 70 % масс., «активное» ГСВ (15 %-ный раствор метилполивинилтетразола в эвтектической смеси нитроэфиров с нитроаминами) — 20 % масс., наноалюминий — 10 % масс., либо смесь АІ с другими наноразмерными порошками металлов Fe, Ni, Ti, Zn (9 % масс., и 1 % масс. соответственно). Исследовались также аналогичные составы с наноалюминием пассивированным аминоуксусной кислотой AI(G).

В таблице 1 приведены результаты экспериментов. Линейная скорость горения вычислялась по формуле:

$$U = \frac{l_{AB}}{\tau_{AB}}$$
 (1)

где U – скорость горения, I_{AB} – расстояние между соседними точками базы, r_{AB} – время прохождения фронтом пламени расстояния между точками A и B. Коэффициент вариации $U \le 5,3$ %.

Для получения кинетической информации проводились термоаналитические исследования (термогравиметрический и дифференциальный термический анализы), указанных выше составов без октогена. Использовался термоанализатор TGA/SDTA 851° «Mettler Toledo». Эксперименты проводились в условиях программируемого линейного нагрева в диапазоне температур от 25°C до 1200°C со скоростью нагрева 0,8 К·с⁻¹. Результаты измерений приводились к виду, удобному для интерпретации (программное обеспечение «STAR° Software 8.0». Получен-

ные значения параметров ΣQ (суммарное тепло), V_{max} (максимальная скорость тепловыделения), T_{Ho} (температура начала окисления) перечислены в таблице 2. Коэффициенты вариации: $T_{Ho} \leq 0.4$ %; ΣQ , $V_{max} \leq 5.1$ %.

Таблица 1 – Скорость горения составов

таолица т	окорооть торопил оботавов		
Металл	<i>U</i> , 10 ⁻³ м/с		
	0,1 МПа	4 МПа	
Al	0,52	6,91	
Al+Fe	0,58	7,02	
Al+Zn	0,40	6,60	
Al+Ti	0,60	7,13	
Al+Ni	0,54	6,91	
AI(G)	0,52	6,90	
AI(G)+Fe	0,59	7,01	
AI(G)+Zn	0,40	6,61	
Al(G)+Ti	0,60	7,10	
AI(G)+Ni	0,54	6,90	

Таблица 2 — Параметры ΣQ , V_{max} и T_{Ho} композиций

Ī.,	ΣQ,	V_{max} ,	T_{HO} ,
Металл	10 ⁴ Дж/кг	кДж·кг ⁻¹ ·с ⁻¹	°C
Al	635,1	23,22	560
Al+Fe	685,3	22,76	560
Al+Zn	535,1	18,03	600
Al+Ti	706,2	20,25	570
Al+Ni	645,6	19,12	580
AI(G)	627,2	23,30	560
Al(G)+Fe	620,0	22,43	560
Al(G)+Zn	534,7	17,95	600
Al(G)+Ti	705,0	20,50	570
Al(G)+Ni	650,2	19,04	580

Результаты экспериментов показали, что значения скорости горения для составов с Al и Al(G) практически совпадают (таблица 1). Значения термодинамических параметров ΣQ , V_{max} и T_{Ho} для всех составов, содержащих Al и Al(G) (таблица 2) отличаются незначительно (0,5–1,5 %).

Показатель степени, рассчитанный согласно степенному закону горения, для составов с Al(G) составил v=0,70, также как и для состава с Al. Наибольшие отличия получены для композиций с добавками цинка и титана к алюминию (рисунок 1). При добавке Ti показатель v=0,75, B случае Zn v=0,67.

Количество тепла, образующегося во время разложения и окисления компонентов высокоэнергетического материала, влияет на процесс горения. Рисунки 3 и 4 иллюстрируют изменение скорости горения составов (при давлениях 0,1 МПа и 4 МПа) в зависимости от добавленного к алюминию металла, добавка которого влияет величину параметра ΣQ (таблица 2).

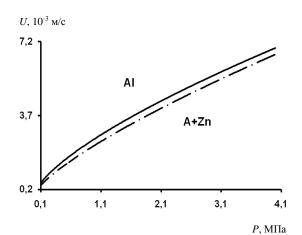


Рисунок 1 — Зависимость U от P составов с AI и AI+Zn

Следует заметить: несмотря на то, что скорость горения исследуемых высокоэнергетических материалов зависит от ряда факторов (например, нитроамины имеют более высокую термостабильность и более низкую летучесть по сравнению с нитроэфирами [7], добавка быстрогорящего октогена может снижать скорость горения связующего [8], значимы дисперсность наполнителя и металлического горючего и т.п.), именно параметр ΣQ (количество тепла, определённое в ходе термографических измерений) имеет наиболее важное значение для изменения параметра U, и может быть использовано для прогнозирования линейной скорости горения таких составов при давлениях 0,1 МПа и 4 МПа (рисунки 2 и 3).

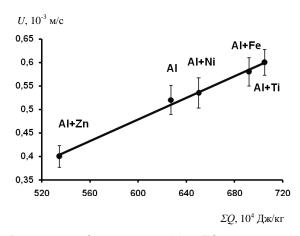


Рисунок 2 — Зависимость U от ΣQ композиций при давлении 0,1 МПа

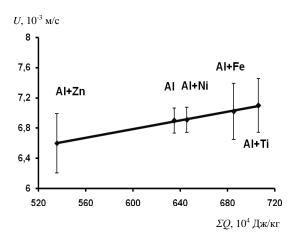


Рисунок 3 – Зависимость U от ΣQ композиций при давлении 4 МПа

В целом составы с Al(G) горят также активно, как составы с непокрытым Al, при этом, химическая совместимость с другими компонентами BЭМ значительно лучше и сопоставима с микронными порошками алюминия «АСД» [5] (объём газообразных продуктов, определявшийся по стандартной ампульно-хроматографической методике составил для Al(G) — 0,01 см 3 /г, Al — 0,26 см 3 /г, «АСД» — 0,04 см 3 /г).

ЗАКЛЮЧЕНИЕ

Экспериментально исследованы скорости горения ВЭМ, содержащих наноразмерные порошки металлов, в том числе и стабилизированный аминоуксусной кислотой алюминий «Alex».

Показано, что пассивация наноалюминия глицином не только обеспечивает его химическую совместимость с другими компонентами высокоэнергетического материала и последующую химическую стойкость, но и не влияет на основную интегральную характеристику горения, что открывает возможности использования такого наноалюминия в качестве топлива в высокоэнергетических композициях для применения в газогенераторах и космических двигателях [9].

СПИСОК ЛИТЕРАТУРЫ

- 1. Сакович, Г. В. Исследования процессов горения ВЭМ с нанопорошками алюминия / Г. В. Сакович, В. А. Архипов, А. Б. Ворожцов, С. С. Бондарчук и др. // Российские нанотехнологии. 2010. Т. 5., № 1–2. С. 89–101.
- 2. Комарова, М. В. Процессы, протекающие в высокоэнергетических системах, содержащих наноразмерные порошки металлов / М. В. Комарова,

ИССЛЕДОВАНИЕ СКОРОСТИ ГОРЕНИЯ ВЫСОКОЭНЕРГЕТИЧЕСКИХ МКТЕРИАЛОВ, СОДЕРЖАЩИХ МОДИФИЦИРОВАННЫЙ НАНОАЛЮМИНИЙ

- В. Ф. Комаров, А. Б. Ворожцов. // Известия высших учебных заведений. Физика. 2011. Т. 54, № 12, С. 107–111.
- 3. Bondarchuk, S. S. Analysis of Multidimensional and Two-phase Flows in Solid Rocket Motors / S. S. Bondarchuk, A. B. Vorozhtsov, E. A. Kozlov, Yu. V Feshchenko // Journal of Propulsion and Power. 1995. V. 11. № 4. P. 593–599.
- 4. Лернер, М. И. Пассивация наноразмерного порошка алюминия для применения в высокоэнергетических материалах / М. И. Лернер, Е. А. Глазков, А. Б. Ворожцов, Н. Г. Родкевич и др. // Химическая физика. 2015. Т. 34, № 1. С. 46.
- 5. Komarov, V. F. Processes Proceeding High-Energy Systems comprising Nanodimensional Alminum and other Nanometals / V. F. Komarov, M. V. Komarova, A. B. Vorozhtsov, M. I. Lerner et al. // Russian Physics Journal. – 2013. – V. 55, № 4. – P. 365–369.
- 6. Komarov, V. F. Stabilizing Coatings for Nanodimensional Aluminum / V. F. Komarov, M. V. Komarova, A. B. Vorozhtsov, M. I. Lerner // Russian Physics Journal. 2013. V. 55, № 10. P. 1117–1122.

- 7. Синдицкий, В. П. Механизм горения нитроэфирных связующих с нитроаминами / В. П. Синдицкий, В. Ю. Егоршев, М. В. Березин, В. В. Серушкин и др. // Физика горения и взрыва. 2012. Т. 48, № 2. С. 45—59.
- 8. Zenin, A. A. Combustion Mechanisms of New Polymer/Oxidizer Compositions / A. A. Zenin, S. V. Finjakov // Proc. 34^{ht} Inter. Annual Conf. ICT, Karlsruhe, FRG. 2003. P. 54–112.
- 9. Vorozhtsov, A. Mathematical Simulation of Airbag Inflation by Low Temperature Gas Generator Products / A. Vorozhtsov, S. Bondarchuk, A. Salko, O. Kondratova // Propellants, Explosives, Pyrotechnics. 2000. V. 25, № 5. P. 220–223.

Комарова М.В., м.н.с. ИПХЭТ СО РАН, тел: (3854)305971, e-mail: mv10mv@mail.ru.

Ворожцов А.Б., д.ф.-м.н., профессор, зам. директора по НР ИПХЭТ СО РАН.

Вакутин А.Г., м.н.с. ИПХЭТ СО РАН, e-mail: alex-wakutin@mail.ru.