ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ ПУЧИНИСТЫХ СВОЙСТВ УПЛОТНЕННЫХ ГРУНТОВ В ЗАВИСИМОСТИ ОТ ПЛОТНОСТИ ИХ СКЕЛЕТА

Б.М. Черепанов, О.Л. Моисеева

В работе представлены результаты исследования уплотненных лессовых грунтов с обзором результатов ранее выполненных экспериментов. Изложены цель и задачи исследования. Выбрано направление для дальнейших экспериментов.

Ключевые слова: лессовые грунты, морозное пучение, физико-механические свойства лессового грунта.

ВВЕДЕНИЕ

Пучинистые свойства грунтов проявляются при разных инженерно-геологических условиях площадки строительства поразному. Наиболее сложными и изменчивыми свойствами обладают лессовые просадочные грунты, расположенные на территории Алтайского края и в частности г. Барнаула. Морозное пучение в таких грунтах приводит к необратимым деформациям и потере несущей способности основания. Поэтому, строительство на структурно-неустойчивых грунтах связано с большими трудозатратами.

Достигнуть устранения пучинистых свойств и повышения прочности грунтового основания можно с помощью закрепления или динамического уплотнения. Одним из простейших и экономичных методов уплотнения является поверхностное уплотнение грунтов трамбовками различного веса.

ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Анализ литературных источников показывает, что до настоящего времени не до конца изучены процессы, происходящие в грунте при его уплотнении, а также влияние действия сил морозного пучения на устойчивость и надежность уплотненных лессовых грунтов.

Целью данных исследований является разработка региональной таблицы прочностных и деформационных характеристик уплотненных лессовых грунтов в зависимости от степени пучинистости. Таблица будет иметь большую практическую значимость и существенно сократит трудовые и материальные затраты на этапах проектирования и строительства.

Для достижения поставленной цели необходимо решить следующие задачи:

- накопить материалы для исследования (изучить ранее выполненные исследования уплотненных лессовых просадочных грунтов, произвести отбор образцов грунта);
- изучить существующее лабораторное оборудование, необходимое при исследовании грунта;
- сопоставить полученные результаты лабораторных исследований с результатами испытаний, выполненных на экспериментальной площадке [1];
- выявить начальное значение плотности скелета грунта, при которой грунт начинает проявлять пучинистые свойства.

Изучение грунтов, их свойств в целом, до настоящего времени является актуальным направлением в области инженерногеологических исследований в Алтайском крае

ОБЗОРНАЯ И ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТИ ИССЛЕДОВАНИЯ

Проанализировав существующий опыт с привязкой к поставленной цели и опорой на имеющиеся результаты исследований можно заметить, что большинство исследователей склоняется к тому, что уплотненные лессовые грунты имеют меньшую деформируемость и более высокие показатели прочностных свойств [1].

В пределах уплотненной зоны полностью ликвидируются просадочные свойства грунтов, увеличиваются такие важнейшие характеристики грунта как: плотность сухого грунта (ρ_d), удельное сцепление (c) и угол внутреннего трения (ϕ). Создается прочное, устойчивое к водонасыщению грунтовое основание и, кроме того, препятствующее замачиванию нижележащих слоев грунта за счет низкой водопроницаемости (таблица 1).

- -		_	
Тарпина 1	- WINSINKU-MEASHINGECKINE	CBUICTBA	уплотненных лессовых грунтов
таолица і	- WIISHING-ING KARINGCINIC	СВОИСТВА	ALDIO LUCUUDIX LICCCOBDIX LICALIOR

			Механические характеристики								
Глуби-		Показатели физиче-		до уплотнения			после уплотнения				
на от- бора	на от- ских свойств грунта бора перед уплотнением		Прочностные ха- рактеристики при W _{sat}		Модуль общей деформации при P = 0, 3 МПа		Прочностные харак- теристики при W _{sat}		Модуль общей де- формации при Р = 0, 3 МПа		
h, M	W _e , %	S _r	ρ _{d,} г/см ³	с, МПа	φ, град.	Е, МПа	E _{sat} , ΜΠα	с, МПа	φ, град.	$\mathrm{E}^{\scriptscriptstyle y},$ M Π a	$\mathrm{E}_{\mathit{sat}}^{\mathit{y}},$ M Π a
0,5	10,2	0,31	1,42	0,004	24	6,96	2,17	0,057	33	23,28	22,96
1	9,6	0,30	1,44	0,005	24	7,12	2,13	0,045	32	22,58	21,70
2	7,0	0,22	1,43	0,005	24	8,28	1,81	0,031	31	22,08	18,36
3	8,8	0,27	1,42	0,005	25	7,32	2,05	0,017	28	15,91	12,69
4	11,4	0,36	1,42	0,006	24	6,66	2,25	0,010	26	13,58	10,60
5	13,5	0,44	1,41	0,006	24	6,08	2,32	0,008	24	12,32	5,60

Из данных таблицы видно, что модуль общей деформации уплотненных лессовых грунтов естественной влажности ненамного изменяется при полном водонасыщении грунта. Прочностные характеристики с и ϕ даны в состоянии полного водонасыщения в условиях консолидированного среза грунта, значения модулей общей деформации - при природной влажности W_e и в водонасыщенном состоянии при W_{sat} .

Для того, чтобы выявить зависимость пучинистых свойств уплотненного грунта от плотности его скелета, в лабораторных условиях проводился ряд опытов. Предварительно грунт был отобран в заранее выбранном месте и исследован в лаборатории кафедры «Основания, фундаменты, инженерная геология и геодезия» АлтГТУ им. И.И. Ползунова в соответствии с первично действующими нормативными документами: ГОСТ 12071-2000 «Грунты. Отбор, упаковка, транспортирование и хранение образцов»; ГОСТ 5180-84 «Грунты. Методы лабораторного определения физических характеристик», ГОСТ 23001-90 «Грунты. Методы лабораторных определений плотности и влажности», ГОСТ 25100-95 «Грунты. Классификация», ГОСТ 12248-96 «Грунты. Методы лабораторного определения характеристик прочности и деформируемости», ГОСТ 20522-96 «Грунты. Методы статистической обработки результатов испытании» (рисунок 1).

Степень уплотненности испытываемого грунта изменялась с количеством ударов в ходе эксперимента. Уплотнение выполнялось в лабораторных условиях на приборе стандартного уплотнения. При этом, влажность грунта была оптимальной (W_{опт} = 18%) в каждом испытываемом образце [2].

Из таблицы 2 видно, что плотность скелета грунта уменьшается с количеством уда-ПОЛЗУНОВСКИЙ ВЕСТНИК №4-1 2013 ров при уплотнении и свидетельствует о прямой зависимости.

Рисунок 1 – Отбор образцов грунта ненарушенной структуры.

Таблица 2 - Зависимость плотности скелета грунта от количества ударов при его уплотнении

Количество ударов	Плотность скелета грунта, р _d , г/см ³				
40	1,83				
30	1,83				
20	1,71				
10	1,62				
5	1,43				

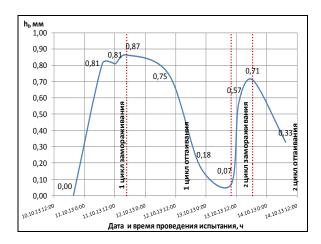


Рисунок 2 - Изменение вертикальной деформации (h_f) от времени образца грунта с плотностью ρ_d = 1,83 г/см³

В продолжении первого эксперимента грунт подвергался двум циклам замораживания и оттаивания при первой экспериментальной плотности $\rho_d=1,83$ г/см 3 (рисунок 2).

Относительная деформация морозного пучения образца грунта ϵ_{fh} = 0,006, что говорит о его непучинистых свойствах при данной плотности.

Следует обратить внимание, что при плотности скелета грунта в естественном залегании (до уплотнения) равной 1,42 г/см³ грунт относится к категории среднепучинистых при показателе текучести равном 0,44 [3]. А при медленном промерзании («мягкие» зимы), происходит миграция влаги, что приводит к повышению влажности, показатель текучести увеличивается до 0,50 и более, и грунт переходит в категорию сильно- и чрезмерно пучинистых.

Последующие испытания будут проводиться при экспериментальной плотности ρ_d =1,71 г/см³ и далее по убыванию.

Предполагается, что величина относительной деформации грунта с уменьшением плотности скелета грунта будет увеличиваться. Эти испытания позволят определить начальное значение плотности скелета грунта, при которой грунт начинает проявлять пучинистые свойства.

ЗАКЛЮЧЕНИЕ

Следует отметить, что работа, описанная в данной статье, представляет собой первый начальный этап оценки степени пучинистости уплотненных лессовых грунтов.

В дальнейшем, в процессе исследования, планируется получить значения прочностных характеристик и модулей общей деформации каждого образца грунта при разной плотности скелета грунта, сопоставить все данные лабораторных исследований с результатами натурных испытаний для составления таблицы деформационных и прочностных характеристик уплотненных лессовых грунтов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Комплексные исследования лессового грунта, уплотненного трамбовками повышенного веса / диссерт. на соискание уч. степ. канд. техн. наук / Б.М. Черепанов / Барнаул, 1998 г.
- 2. ГОСТ 22733-2002. Грунты. Метод лабораторного определения максимальной плотности. М.: Издво стандартов, 2002.
- 3. ГОСТ 25100-95 Грунты. Классификаци. М.: Изд-во стандартов, 1995.

Черепанов Б.М. – к.т.н., доцент, Е-mail: bmcher@mail.ru, **Моисеева О.Л.** – магистрант, E-mail: carolja89@mail.ru, Алтайский государственный технический университет.