ческим свойствам (плотность, температуре кипения и т.д.). Основные физико-химические свойства индивидуальных составляющих сольвента и наиболее часто используемы в флексографии растворителей приведены в таблице 1.

Таблица 1 – Свойства чистых веществ

	Плот-	Т _{кип} ,	
Вещества	ность,	°C ,	T _{пл} , °С
	г/см ³		
Толуол	0,8669	110,6	- 95,0
Этилацетат	0,9020	77,0	- 84,0
Этанол	0,7893	78,4	- 114,3
Этилцеллозольв	0,9310	135,6	- 70,0
Ацетон	0,7899	56,1	- 95,0
Бутилацетат	0,8800	126,0	- 74,0
Бензол	0,8786	80,1	5,5

В литературе [3] также найдены данные по равновесию жидкость пар в бинарных системах:

- этанол бензол;
- бутанол толуол
- этанол-ацетон;
- этилацетат-этанол;
- ацетон-бензол;
- этилацетат-толуол;
- этанол-толуол.

Анализ данных показал, что ряд бинарных систем образуют азеотропные смеси, и разделение их обычными методами ректификации невозможно.

Таким образом, необходимо рассмотреть специальные методы ректификации, в частности азеотропная ректификация с использованием полярных растворителей.

Регенерация сольвента также может быть проведена с помощью процесса экстракции неполярным экстрагентом – пентаном и полярным растворителем – диметилформамидом. Экстракт и рафинат в дальнейшем будут ректифицироваться с получением сольвента и регенерированных экстрагентов [4].

При разработке способов регенерации растворителей в флексографии нами будут рассмотрены и экспериментально изучены различные методы химической технологии. Выбор технологии будет основываться на ее экологических показателях и технико-экономическом обосновании.

СПИСОК ЛИТЕРАТУРЫ

- 1) Пат. 2264840 РФ, МПК 7 В01D3/00, C07C9/00, C07C11/00, C07C13/00, C07C15/00, C07C49/00. Универсальная установка для очистки ректификацией растворителей, Вендело А.Г., Трохин В.Е., опубл. 27.11.2005.
- 2) Пат. 2104731 РФ, МПК⁷ В01D3/14. Способ очистки органических жидкостей. Соколов А.Ю., Аристович В.Ю., Аристович Ю.В., опубл. 20.02.1998.
- 3) Справочник Равновесие жидкость пар, Г. С. Людмирская, Т.А. Барсукова, А.М. Богомольный 1987г.
- 4) Патент на изобретение №: 2185416 Способ одновременного получения экологически чистого дизельного топлива и ароматического растворителя /Сомов В.Е.,Гайле А.А.,Залищевский Г.Д.,Семенов Л.В.,Варшавский О.М.,Ерженков А.С.,Колдобская Л.Л.,Кайфаджян Е.А., опубл. 20.07.2002.

УДК 546.3:664.85(0.45)

СТРУКТУРНЫЕ И ЭЛЕКТРОХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ СОРБЦИИ ГАЗОВ НАНОКОМПОЗИЦИОННЫМ СОРБЕНТОМ

О.В.Кибальникова

Методом газовой хроматографии исследована сорбция газообразного пиридина нанокомпозиционным сорбентом, представляющим собой электрохимически активную гетерограницу. Образующиеся в результате сорбции ионные пары А⁻Н⁺(Н⁺- карбкатион; А⁻ - карбанион) исследованы методом Монте-Карло и методом пересекающихся парабол.. Образование ион-проводящих структур связывается с каталитическим процессом, протекающим по механизму Ленгмюра-Хиншельвуда. Дискретный характер специфически адсорбированных ионов на внутренней плоскости Гельмгольца объясняется эффектом Есина-Маркова.

Ключевые слова: нанокомпозиционный сорбент; гетерограница, ионные пары, метод Монте-Карло; механизм Лэнгмюра-Хиншельвуда; плоскость Гельмгольца; эффект Есина-Маркова.

ВВЕДЕНИЕ

Наноматериалы и нанотехнологии в последнее десятилетие 20 века стали предметом [1] активного изучения и применения в физике, химии, биологии, материаловедении. В аналитической химии появился термин «наноаналитика», отражающий использование новых типов материалов и технологий. Выделяют три направления наноаналитики: 1 - методология, связанная и использованием в анализе нанореакторов, представляющих собой жидкие наносистемы, применяемые практически во всех методах разделения, концентрирования и анализа [2]; 2 - использование твердых наноматериалов [3]: разные виды наночастиц (трехмерные и нульмерные (квантовые точки) объекты), нанопленки (двухмерные объекты), нанотрубки, наностержни, нановолокна (одномерные объекты) и пористые наноматериалы [4]. Кроме поверхностных факторов важнейшую роль в них играют квантовые эффекты и этим они радикально отличаются от классических жидких наносистем [5]. К третьему направлению наноаналитики относят 3D [6] измерения наноразмерных объектов на поверхности, а также непосредственные измерения атомов и молекул, включая биомолекулы. Не осталась в стороне и электрохимия, в которой появился термин «наноэлектрохимия», занимающаяся исследованием квантовых и размерных эффектов наносистем, двойного электрического слоя возникающего на поверхности наноматериалов и сорбирующихся газов, процессов сорбции, адсорбции, катализа, кинетики процессов, переноса заряда и т.п., поскольку переход от массивных макро- или даже микроразмеров приводит к качественным изменениям физических (электропроводность, магнетизм, поглощение и излучение света, оптического преломления, термических свойств, прочности) и химических (каталитической или реакционной способности) свойств соединений и свойств композиционных материалов.

В связи с этим представляет особый интерес исследование эффекта Есина- Маркова при сорбции газов нанокомпозиционным сорбентом.

В настоящей работе методом Монте – Карло моделируются ион-проводящие структуры пиридина, образующиеся при сорбции на нанокомпозиционном сорбенте.

Реакция образования ион-проводящих структур исследовалась методом пересекающихся парабол. В этом методе реакция протонного переноса рассматривается как

результат пересечения двух потенциальных кривых, одна из которых характеризует валентное колебание атакуемой связи, а другая — образующейся связи. Колебания связей считают гармоническими. При рассмотрении двойного электрического слоя, возникающего при специфической адсорбции анионов, рассматривается эффект Есина-Маркова.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты проводили на хроматографе «Кристалл-2000М» с пламенно ионизационным детектором и колонкой 1 м, внутренним диаметром 3 мм. В качестве газоносителей использовали водород и воздух. Температура колонки варьировалась в пределах 120÷185°С. В качестве адсорбента используется наноструктурированный материал – 10% 3-нитрилпропанамин на цветохроме (фракция 0,14÷0,25 мм), представляющий собой электрохимически активную гетерограницу «протонный проводник - гидрируемый металл» [7]. В качестве адсорбата исследовали газообразный пиридин (V=0,5 мл). Опытным путем при исследовании сорбции газа с помощью изотермы Фрумкина установлено, что при введении пробы значение аттракционной постоянной а>2, что соответствует образованию димеров. Для исследования ион-проводящих структур использовали метод Монте-Карло (МК), основывающийся на нахождении минимума потенциальной энергии канонического ансамбля при заданных постоянном объеме и температуре [8]. Для газовых димеров метод МК представлен:

$$U_{i,j} = \frac{z_i z_j e_o^2}{2\pi\varepsilon \cdot r} - \frac{A}{r_{i,j}^6} + \frac{B}{r_{i,j}^{12}}.$$
 (1)

Второе и третье слагаемые в правой части уравнения (1) отвечают соответственно притяжению и отталкиванию колец пиридина, т.е. стэкинг взаимодействию. Константа ассоциации соотносится с минимумом потенциальной энергии уравнением:

$$k_{acc.} = \frac{4\pi N_A r_{min}^3}{3000} \exp \left[-U(r_{min.})/kT \right],$$
 (2)

где $k_{acc.}$ - константа ассоциации; Т- температура колонки; r_{ij} —расстояние на которое сближаются ионы; $U(r_{min.})$ — минимум потенциальной энергии; ϵ — диэлектрическая проницаемость.

В методе пересекающихся [9] парабол рассчитывают следующие параметры: 1) классическую энтальпию ΔH_H , вклю-

чающую разность нулевых колебаний атакуемой (D_i) и образующейся (D_f) связей ($\Delta H_{\scriptscriptstyle H} = D_{\scriptscriptstyle i} - D_{\scriptscriptstyle f} + 0.5 h N_{\scriptscriptstyle A} (\nu_{\scriptscriptstyle i} - \nu_{\scriptscriptstyle f})$, где h постоянная Планка, N_A – число Авогадро, V_i и $\mathcal{V}_{\scriptscriptstyle f}$ - частоты нулевых колебаний атакуемой и образующейся связей соответственно); 2) классическим потенциальным барьером Ен, который связан с экспериментально определяемой аррениусовской энергией активации ${\sf E_a}~~$ уравнением: $E_{\scriptscriptstyle H}=E_{\scriptscriptstyle a}+0.5(hN_{\scriptscriptstyle A}\nu_{\scriptscriptstyle i}-RT)$ (3); 3) коэффициентами b_i и b_f, описывающими зависимость потенциальной энергии от амплитуды колебания атомов вдоль валентной связи $b = \pi v_i (2\mu)^{1/2}$, (где μ – приведенная масса атомов), образующих связь и параметром $\alpha = \frac{b_i}{b_f}$ 4) параметром $\mathbf{r_e}$, кото-

рый характеризует суммарное растяжение или сжатие двух реагирующих связей в переходном состоянии. Эти параметры связаны следующим соотношением:

$$br_e = \alpha (E_H - \Delta H_H)^{1/2} + E_H^{-1/2}$$
 (4),

где $b = b_i$ относятся к атакуемой связи в молекуле.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Данные констант ассоциации ионных тройников, степени ассоциации, минимума потенциальной энергии представлены в таблице1.

Таблица 1 - Параметры ассоциации ионпроводящих структур

T, ℃	α _{diss} ·10 ⁻⁷	K _{ass.}	U Дж/mol	$\Delta G_{ass.},$
	10		д луттот	
				Дж/моль
120	0,52	8,2.·10 ¹²	-1,74·10 ⁵	-49,23·10 ⁴
130	1,37	1,3·10 ¹²	-3,64·10 ⁵	-9,295·10⁴
140	1,25	1,42 _. ·10 ¹²	-4,09·10 ⁵	-9,59⋅10⁴
150	1,69	7,85 _. ·10 ¹¹	-2,54·10 ⁵	-9,6·10 ⁴
160	1,86	6,48 _. ·10 ⁹	-2,62·10 ⁵	-8,1·10 ⁴
170	0,19	1,34 _. ·10 ¹¹	-1,95·10⁵	-9,42·10 ³
180	2,72	3,03 _. ·10 ¹¹	-5,57·10⁵	-9,06·10⁴
185	2,45	3,74 · 10 ¹¹	-3,37·10 ⁵	-10,1·10 ⁴

Q — заряд иона; $\Delta G_{ass.}$ - свободная энергия Гиббса при образовании ассоциатов; $K_{acc.}$ - константа ассоциации; α_{diss} — степень диссоциации.

Результаты моделирования двумерных ион-проводящих структур пиридина Монте-Карло представлены в таблице 2.

Таблица 2 - Параметры моделирования Монте-Карло

U J/mol	T _{col.} , °C	А, Дж·А ⁶ /mol	B, J·A ¹² /mol	$\frac{z_i z_j e^2}{2\pi \sigma_{ij}}$
				Дж/моІ
-1,74·10 ⁵	120	80,45	-44,6·10 ⁵	8,3
-3,64·10 ⁵	130	77,13	-76,69·10⁵	35,4
-4,09·10 ⁵	140	16,3	-4,09·10 ⁵	18
-2,54·10 ⁵	150	10,69	-1,2·10 ⁵	25,8
-2,62·10 ⁵	160	2,39·10 ⁻²	-2,38	4,14
-1,95·10 ⁵	170	1,92	-0,14·10 ⁵	1,8
-5,57·10 ⁵	180	1,36	-5295	5,27
-3,37·10 ⁵	185	0,37	-322	0,95

Зависимость образования U(r_{min}) ионпроводящих структур сорбирующегося газообразного пиридина от температуры колонки представлена на рис. 1

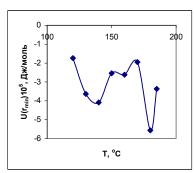


Рисунок 1 - Зависимость образования U(r_{min}) ион-проводящих газовых структур при сорбции пиридина (V=0,5 мл) от температуры колонки

Поскольку внутренняя плоскость Гельмгольца при сорбции ион-проводящих частиц пиридина имеет разные значения заряда мигрирующего иона, то предполагается дискретный характер специфически адсорбированных частиц.

На рис.2 представлена зависимость величины мигрирующего заряда от температуры колонки.

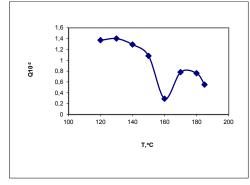


Рисунок 2 – Зависимость заряда от температуры колонки

Кроме разности потенциалов, создаваемой зарядами сорбента и ионами двойного слоя, электрические свойства границы раздела зависят от находящегося на поверхности сорбента растворителя. Общий скачок потенциала φ , равен падению потенциала в слое Гельмгольца ψ (пси- потенциал) плюс падение потенциала в диффузном слое ψ_1 (пси-прим-потенциал):

$$\varphi = \psi + \psi_1 \tag{5}$$

Диффузная область представляет собой слой ионов, которые находятся в своеобразной потенциальной яме. Переход их в раствор требует преодоления некоторого потенциального барьера. В отличие от внутренней внешняя плоскость Гельмгольца представляет собой границу, до которой могут подходить молекулы адсорбата (точнее их электрические центры), участвующие в тепловом движении.

Первые количественные оценки эффекта дискретности были сделаны О.А.Есиным и сотр. Эффект дискретности проявляется наиболее сильно, т.к. специфически адсорбированные ионы лежат посередине плотного слоя.

Эффект дискретности (λ=0,5) заключается в том, что отталкивание между ионами оказывается меньше, чем при равномерно размазанном по внутренней плоскости Гельмгольца заряде. Исследование эффекта Есина-Маркова, подтверждающего дискретный характер специфически адсорбированных анионов на внутренней плоскости Гельмгольца, проводили по методике [8].

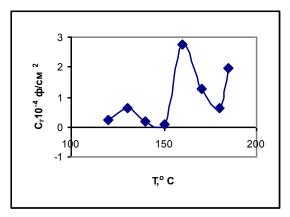


Рисунок 3 - Зависимость емкости Гельмгольца от температуры колонки

Результаты исследования эффекта Есина - Маркова при сорбции газа приведены в табл.3.

Таблица 3 - Исследование специфической адсорбции ион-проводящих структур пиридина нанокомпозиционным сорбентом (λ=0,5)

T,°C	B_q	10-2	K ₁₂ ,	$\left(\frac{d\varphi_o}{d\ln c_i}\right)_{q=o}$
		q _{1m} ·10 ⁻² ,	кл/в·м²	$d \ln c_i$
		кл		В
120	0,49	1,4	2,84·10 ⁻³	-5,0
130	0,5	1,4	2,83·10 ⁻³	-5,0
140	0,37	1,35	3,14·10 ⁻³	-5,6
150	0,23	1,23	3,26·10 ⁻³	-6,67
160	0,03	0,66	1,83·10 ⁻³	-25,0
170	0,14	1,03	2,77·10 ⁻³	-10,0
180	0,18	1,02	2,1·10 ⁻³	-10,0
185	0,09	0,81	2,0·10 ⁻³	-14,29

где ${\rm K_{12}}$ – интегральная емкость пространства между внутренней и внешней

плоскостями Гельмгольца
$$(K_{12}=-rac{z\lambda Fq_{1m}}{2RTa})$$
 ;

 q_{1m} – предельное значение q_1 , отвечающее

$$\theta$$
=1; $\mathsf{B_q} \ (B_q = \frac{z_i^2 \lambda F}{2RTK_{12}})$ – второй вириальный

коэффициент, характеризующий отталкивание между специфически адсорбированными

ионами при заданном q=const;
$$(\frac{d \varphi_o}{d \ln c_\cdot})_{q=o}$$
 -

значение сдвига п.н.з.

На рис. 4 представлена зависимость поверхностного натяжения образующихся димеров от температуры колонки.

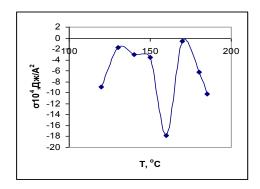


Рисунок 4 - Зависимость поверхностного натяжения димеров от температуры колонки

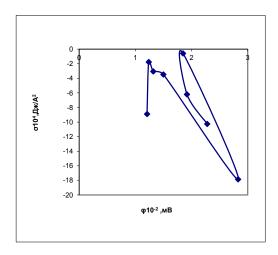


Рисунок 5 - Зависимость поверхностного натяжения димеров от потенциала сорбента

Результаты исследования образования ион-проводящих пиридина структур по методу пересекающихся парабол представлены в табл.4.

Таблица 4 - Данные метода МПП

Downer	T r	br _e ⋅10 ³	b·10 ¹¹ ,	
Режим	E _e ,			r _e , M
	дж/моль	(Дж/моль)	кг∙моль/	
	3		С	
Т _{дет} -150°С	-2,78·10 ³	3,33	0,32	1,82·10 ⁻⁸
Т _{исп} -120°С				
Т _{кол} -120°С				
T _{дет} -150°С	-2,84·10 ³	3,37	1,85	1,82·10 ⁻⁸
Т _{исп} -120°С				
Т _{кол} -130°С				
Т _{дет} -150°С	-2,95·10 ³	3,44	1,80	1,91·10 ⁻⁸
Т _{исп} -120°С				
Т _{кол} -140°С				
Т _{дет} -150°С	$-3,17\cdot10^3$	3,44	1,71	2,01·10 ⁻⁸
Т _{исп} -120°С				
Т _{кол} -150°С				
Т _{дет} -150°С	-4,51·10 ³	4,25	0,87	4,9·10 ⁻⁸
Т _{исп} -120°С	, -	, -	-,-	,
Т _{кол} -160°С				
Т _{дет} -150°С	-3.6·10 ³	3,79	1,54	2.46·10 ⁻⁸
Т _{исп} -120°С	0,0 10	0,70	1,01	2, 10 10
Т _{кол} -170°С				
Т _{дет} -150°С	-3,71·10 ³	3,85	1,54	2,5·10 ⁻⁸
Т _{исп} -120°С	-5,7110	3,00	1,54	2,5 10
Т _{кол} -180°С				
Т _{дет} -150°С	-4,08·10 ³	4,04	1,32	3,06·10 ⁻⁸
	-4,00.10	4,04	1,32	3,00.10
T _{исп} -120°C				
Т _{кол} -185°С	1		İ	

ЗАКЛЮЧЕНИЕ

Таким образом в результате сорбции газообразного пиридина нанокомпозиционным сорбентом образуются ионные пары А⁻H⁺ (А⁻ - карбанион; H⁺ -карбкатион), образующие ион-проводящие структуры. Образование двумерных комплексов с переносом заряда предположительно происходит по механизму Лэнгмюра-Хиншельвуда [10]. Реакции можно представить уравнениями:

$$A_{(z)} + s \Leftrightarrow (A...s)_{abc}$$
 (6)

$$B_{(z)} + s \Leftrightarrow (B...s)_{a\partial c}$$
 (7)

$$(A...s)_{a\partial c} + (B...s)_{a\partial c} \rightarrow (P...s)_{a\partial c}$$
 (8)

$$(P...s)_{a\partial c} \Leftrightarrow (AB) + s$$
 (9)

т.е. компоненты реагируют, находясь в хемосорбированном состоянии. Это означает, что при сольволизе может реализоваться пушпульный механизм. Одной из особенностей этих реакций является когерентность, т.е. возникновение колебательных режимов. В данном случае возникает квантовая [11] когерентность, которая проявляется в форме электронно-спиновых квантовых биений.

При электронно-спиновой когерентности осуществляется осцилляция спиновых пар между синглетом и триплетом.

На сорбенте наблюдается аномально

высокий сдвиг п.н.з.
$$(\frac{d \varphi_{\scriptscriptstyle o}}{d \ln c_{\scriptscriptstyle i}})_{\scriptscriptstyle q=o}$$
 , который

зависит от температуры сорбента, заряда поверхности и составляет \sim - 5 \div -25 В . При температуре сорбента 160^{0} С эффект имеет максимальное значение.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аналитическая химия новые методы и возможности. Съезд аналитиков России и школа молодых ученых. Апрель 2010 Москва. С.15
- 2.Штыков С.Н.// Журн. аналит. Т.57.№10. С 1018
- 3.Нанотехнологии. Наноматериалы, Наносистемная техника/Сб.под ред П.П. Мальцева. М.: Техносфера, 2008.432 с.
- 4. Нанотехнологии. Азбука для всех/ Под ред Ю.Д. Третьякова. М.: ФИЗМАТЛИТ, 2008.368 с.
- 5. Штыков С.Н., Русанова Т.Ю.// Рос.хим. журн.2008.Т.52.№2.С.92
- 6. Nanotechnology 6: Nanoprobes, H. Fuchs (Ed.), Wiley.-VCH,2009.
- 7. Кремер Г. «Квазиэлектрическое поле и разрывы зон. Обучение электронов новым фокусам. Нобелевская лекция»// Успехи физических наук. Т.172 №9. 2002. С.1089
- 8. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М: Химия, КолосС, 2006.672 с.
- 9. Денисова Е.Т., Демина Т.Г. «Физикохимические аспекты изомеризации свободных радикалов»//Успехи химии Т. 73 № 11, 2004 с.1181-1209
- 10. Байрамов В.М. Основы химической кинетики и катализа М.: Изд. Центр «Академия», 2003.-256 с.
- 11.В.В. Вольхин Когерентность в химических реакциях СПб: Из-во «Лань», 2008,- 448 с.