ПОСЛОВНОЕ КОДИРОВАНИЕ СООБЩЕНИЙ, ПОРОЖДЕННЫХ СТАЦИОНАРНЫМ ИСТОЧНИКОМ С НЕИЗВЕСТНОЙ СТАТИСТИКОЙ

В.К.Трофимов, В.И.Агульник, И.И.Резван

Доказано, что для любой последовательности кодовых множеств, у которых длина минимального слова стремится к нулю, существует слабоуниверсальное пословное кодирование для множества всех стационарных дискретных сообщений.

Ключевые слова: энтропия, кодирование, избыточность, источник сообщений

Основные определения. Постановка задачи

Настоящая работа посвящена кодированию информации, порожденной источником, в её классической форме, предложенной К.Шенноном [1]. Для постановки задачи и формулировки основных утверждений приведем основные определения и обозначения.

буквы Пусть конечного алфавита $A = \{a_1, a_2, ..., a_k\}$, $2 \le k < \infty$, порождаются источником Ө. Мера, заданная на последовательности букв, порождаемой источником, определяет тип источника. Если вероятности $P_{\theta}(a_i), j = \overline{1,k}$ порождения букв $a_i, j = \overline{1,k}$ θ_i , j=1,k, независимы равны $\theta_1 + \theta_2 + \ldots + \theta_k = 1$, то источник называют бернуллиевским. Если же вероятность $P_{\theta}(a_i/a_j)$ появления очередной буквы a_i зависит от предыдущей буквы

 $P_{\theta} \Big(a_i \big/ a_j \Big) = \theta_{ji} \,, \, \sum_{i=1}^k \theta_{ji} = 1 \,, \, \, j = \overline{1,k} \,,$ и в этом случае источник называют марковским. Если вероятность появления очередной буквы зависит от s предшествующих букв, т.е. $P_{\theta} \Big(a_j \big/ v \Big) = \theta_{vj} \,,$ где $v \in A^s$, то источник θ называют марковским с памятью s. Следует отметить, что для любого слова $v \in A^s$, $0 \le s < \infty$,

выполняется равенство $\sum_{j=1}^{\kappa} \theta_{vj} = 1$. Множество всех марковских источников с памятью s обозначим Ω_s . Дискретный стационарный источник θ задаётся всеми условными распределениями вероятностей $P_{\theta}(a_j/\nu) = \theta_{vj}$ порождения источником букв a_j , $j = \overline{1,k}$, при заданных ν предшествующих букв, $\nu \in A^s$, s-любое целое неотрицательное число. Здесь,

как и выше, при любом заданном v, $v \in A^s$ выполняется равенство:

$$\sum_{j=1}^{k} \theta_{vj} = 1; \quad s = 0, 1, 2, \dots$$

Множество всех стационарных источников обозначим Ω_{∞} .

Пусть u — произвольное слово в алфавите A. Обозначим через $P_{\theta}\left(u\right)$ вероятность слова u, порожденного источником θ . Энтропию источника θ обозначим $H(\theta)$. Как известно [2-4], если θ — стационарный источник, то

$$H(\theta) = -\lim_{n \to \infty} \frac{1}{n} \sum_{u \in A^n} P_{\theta}(u) \cdot \log P_{\theta}(u). \tag{1}$$

3десь и в дальнейшем $\log x = \log_2 x$, $0\log 0 = 0$.

Для бернуллиевского источника θ его энтропия $H_0(\theta)$ определяется равенством

$$H_0(\theta) = -\sum_{i=1}^k \theta_i \log \theta_i$$
 (2)

Если θ – марковский источник с памятью s , то его энтропия $H_s(\theta)$ находится по формуле

$$H_s(\theta) = -\sum_{v \in A^s} \theta_{0v} \sum_{i=1}^k \theta_{vi} \log \theta_{vi}, \quad (3)$$

где $\theta_{0\nu}$ — начальные стационарные вероятности слов γ , $\nu \in A^s$. При s=0 из (3) получаем соотношение (2). Если θ — произвольный стационарный дискретный источник и $H(\theta)$ его энтропия, то справедливо равенство [2–4]

$$H(\theta) = \lim_{s \to \infty} H_s(\theta)$$
. (4)

Рассмотрим T - конечное полное множество слов во входном алфавите. Множество T - полное, если оно префиксное и при любом непустом слове u (в алфавите A) множест-

РАЗДЕЛ IV. МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ И ДАННЫХ

во слов $T \cup u$ уже не префиксное. Такое множество T назовем кодовым. Примером кодового множества может служить множество всех слов длины п взятых в алфавите A, т.е. A^n ; множество $A^n \setminus \underline{a_1, \ldots, a_k}$, не является

кодовым, потому что оно не полное.

Пусть θ — произвольный источник из Ω_s , T — произвольное кодовое множество. Обозначим через $\theta(T)$ марковскую цепь, состояниями которой являются слова из T , а переходные вероятности $P_{\theta(T)}(u/v)$, $u,v\in T$, индуцируются источником θ . Будем рассматривать только марковские источники с памятью s , переходные вероятности которых строго положительны. Тогда для любых $u,v\in T$ выполняются неравенства $P_{\theta(T)}(u/v)>0$, поэтому для марковской цепи $\theta(T)$ существует стационарное распределение $P_{\theta(T)}^0(u)>0$, $u\in T$. Средняя длина слова $d_s(T,\theta)$ для множества T , как доказано в [5], равна

$$d_s(T,\theta) = \sum_{u \in T} P_{\theta(T)}^0(u) \cdot |u|$$
, (5)

где $\frac{|u|}{B}$ - число букв в слове и (длина слова и). В этой же работе доказаны тождества Вальда, которые имеют вид

$$\sum_{u \in T} P_{\theta(T)}^{0}(u) \cdot r_{v}(u) = (d_{s}(T, \theta) - \hat{s} + 1)\theta_{0v}, \quad (6)$$

$$\sum_{u \in T} P_{\theta(T)}^{0}(u) \cdot r_{vi}(u) = (d_s(T, \theta) - s)\theta_{0v}\theta_{vi}, \quad (7)$$

где $r_{\rm v}(u)$, $r_{\rm vi}(u)$ - число вхождений блоков v,va_i , $v\in A^s$, в слово u, соответственно, $\hat{s}=\max{(s,1)}$.

Полубесконечная последовательность букв, порождаемая источником θ , однозначно разбивается на последовательность слов из фиксированного кодового множества T. Полученная последовательность слов из T с помощью отображения ϕ переводится в слова выходного алфавита B, который, не уменьшая общности, можно считать двоичным. Из неравенства Мак-Милана-Крафта [2–4] следует, что самое общее из всех возможных дешифрируемых кодирований ϕ такое, что множество слов в выходном алфавите $\phi(T) = \{\phi(u), u \in T\}$ является префиксным.

Если длины всех слов некоторого множества D равны между собой, то говорят, что D состоит из блоков; в противном случае из слов переменной длины. В зависимости от видов множества T и $\varphi(T)$ логически возможны следующие виды кодирований:

- 1) кодирование, отображающее блоки в слова переменной длины (обозначается BV):
- 2) кодирование, отображающее слова переменной длины в блоки (VB);
- 3) кодирование, отображающее слова переменной длины в слова переменной длины $^{(VV)}$:
- 4) кодирование, отображающее блоки в слова переменной длины (BB).

$$C_{\sigma}(T,\theta,\varphi) = \frac{1}{d_{s}(T,\theta) - \hat{s} + 1} \sum_{u \in T} P_{\theta(T)}^{0}(u) \cdot |\varphi(u)| \cdot (8)$$

Эффективность кодирования ϕ , как обычно [1–4], будем оценивать разностью между стоимостью кодирования $C_{\sigma}(T,\theta,\phi)$ и энтропией источника $H(\theta)$. Эта разность в дальнейшем называется избыточностью кодирования и обозначается $r_{\sigma}(T,\theta,\phi)$, т.е.

$$r_{\sigma}(T, \theta, \varphi) = C_{\sigma}(T, \theta, \varphi) - H(\theta)$$
. (9)

Избыточностью универсального кодирования типа σ для множества источников Ω с заданной сложностью N , назовем величину $R_{\sigma}(N,\theta)$:

$$R_{\sigma}(N,\theta) = \inf_{\sigma} r_{\sigma}(T,\theta,\phi). \tag{10}$$

Здесь нижняя грань берется по всем кодированиям ϕ , для которых кодовое множество T имеет не более чем k^N слов. Построение хорошего кодирования при заданной сложности — основной вопрос при изучении передачи сообщений по каналу без шума. Решение поставленной задачи позволяет ответить на вопрос: «какой избыточности можно достигнуть при заданной сложности кодирования?»

Если множество источников Ω состоит из единственного источника, то мы имеем дело с кодированием информации, порожденной известным источником, которое подробно изучено для различных типов кодирования, например, в работах [1-4, 6-13]. Универсальное кодирование марковских источников различных типов также хорошо изучено. Подробную библиографию по этому вопросу можно найти в [14 - 18]. Особо отметим работу В.Ф.Бабкина, Ю.М. Штарькова [15], в которой изучалось BV кодирование для стационарных источников. В частности, в этой работе было доказано, что существует последовательность BV кодирований $\phi_{\scriptscriptstyle N}$ такая, что для любого стационарного источника θ избыточность кодирования $r_{RV}(A^N, \theta, \phi_N)$ стремится к нулю. В тоже время легко показать, что это стремление к нулю не является равномерным по θ , более того при $N \to \infty$ избыточность универсального кодирования множества всех стационарных источников $R_{BV}(N,\Omega_{\infty})$ стремится к бесконечности. Вопрос о равномерной $r_{RV}(A^N, \theta, \phi_N)$ в [15] не исследовался. Кодирование, построенное в [15], получило название слабоуниверсальное кодирование. При построении слабоуниверсального BV кодирования основная сложность состоит в определении отображения $\phi_{\scriptscriptstyle N}$, так как область определения при таком кодировании определена – это множество всех слов длины N в алфавите А.

При построении кодирования типа VB основная трудность состоит в конструировании области определения кодирования ϕ_N , т.е. в определении кодового множества T_N .

В [16] предложен метод универсального равномерного по выходу кодирования для множества марковских источников связанности s, получена верхняя оценка избыточности, которая примерно в два раза лучше оценки автора [17]. Доказано существование слабоуниверсального кодирования типа BV для множества всех стационарных источников. Сформулированы необходимые и достаточные условия, которым должно удовлетворять множество источников Ω , для того, чтобы на множестве Ω существовало универсальное кодирование.

В настоящей работе установлено, что для любой последовательности кодовых мно-

жеств $\{T_{N}\}$, $N=1,2,\ldots$, у которых $\displaystyle \min_{u\in T_{N}} u$ стремится к бесконечности, существует слабоуниверсальное пословное кодирование для множества стационарных источников. Получены необходимые и достаточные условия существования универсального кодирования для подмножества множества стационарных источников.

Неравномерное по выходу по входу и выходу универсальное кодирование марковских источников

В этом параграфе будет предложен метод VV кодирования марковских источников с памятью S, получена оценка избыточности предложенного метода и доказана его универсальность. При доказательстве основного утверждения параграфа нам потребуются следующие понятия и обозначения. Марковский источник θ связанности S задается начальным распределением вероятностей θ_{0v} появления блока v за первые s шагов работы источника и вероятностями θ_{vi} появления буквы a_i , после блока v, $a_i \in A$, $v \in A^S$. Отсюда следует, что вероятность $P_{\theta}(u)$ порождения слова u, |u| > s, начинающегося блоком v, $v \in A^S$, источником θ определяется равенством

$$P_{\theta}(u) = \theta_{0v} \prod_{v \in A^{s}} \prod_{i=1}^{k} \theta_{vi}^{r_{vi}(u)}.$$
 (11)

На множестве источников Ω_{s} определим КТ распределение $\omega(\theta)$ [14], которое задается формулой

$$\omega(\theta) = \left(\frac{r\left(\frac{k}{2}\right)}{k\pi^{\frac{k}{2}}}\right)^{k} \cdot \frac{1}{\sqrt{\prod_{v \in A^{s}} \prod_{i=1}^{k} \theta_{vi}}}$$
(12)

Проинтегрировав вероятность слова u, порожденного источником θ , по множеству источников Ω_{s} , если на Ω_{s} задана плотность $\omega(\theta)$, получим [14]:

$$\overline{P_S}(u) = \left[\frac{\Gamma\left(\frac{k}{2}\right)}{k\pi^{\frac{k}{2}}}\right]^{ks} \prod_{v \in A^S} \frac{\prod_{j=1}^k \Gamma\left(r_{v_j}(u) + \frac{1}{2}\right)}{\Gamma\left(r_v(u) + \frac{k}{2}\right)}. \quad (13)$$

РАЗДЕЛ IV. МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ И ДАННЫХ

Здесь $\Gamma(z)$ - гамма функции от z . Используя для функции $\Gamma(z)$ формулу Стирлинга в виде

$$\log\Gamma(z) = \log\sqrt{2\pi} + \left(z - \frac{1}{2}\right)\log\left(z - \frac{1}{2}\right) - z\log e + c(z)\log e,$$
(14)

где постоянная c(z) удовлетворяет не-

равенствам $\frac{1}{2}\log(e-1) \le c(z)\log e \le \frac{1}{2}\log e$, из (13) получаем:

$$-\log \overline{P_s}(u) = \sum_{v \in A^s} r_v(u) F_v(u) + \frac{k-1}{2} \sum_{v \in A^s} \log \hat{r}_v(u) + c.$$
 (15)

Здесь $F_{s}(u)$ - квазиэнтропия u , определяемая равенством

$$F_{s}(u) = -\sum_{v \in A^{s}} \frac{r_{v}(u)}{|u| - s} \sum_{i=1}^{k} \frac{r_{vi}(u)}{r_{v}(u)} \log \frac{r_{vi}(u)}{r_{v}(u)}$$

(17)

Сформулируем и докажем основное утверждение параграфа.

Теорема 1. Для любого фиксированного s, $0 \le s < \infty$, для любой последовательности кодовых множеств в ${T_N^{\theta}}$, $N=1,2,\cdots$ такой, $\min_{u \in T_N} |u|$ стремится к бесконечности с ростом N, существует последовательность универсальных кодирований $\{\phi_N\}$, $N=1,2,\ldots$, для которых избыточность кодирования $r_{VB}\left(T_N,\theta,\phi_N\right)$ при любом θ , $\theta \in \Omega_s$ удовлетворяет неравенству

$$r_{VV}\left(\varphi_{N},\theta,T_{N}\right) \leq \frac{k^{s}\left(k-1\right)}{2} \cdot \frac{\log d\left(T_{N},\theta\right) + c}{d\left(T_{N},\theta\right)}$$

где постоянная c не зависит ни от $^{\overset{\cdot}{\theta}},$ ни от $^{T_{_{N}}}.$

Доказательство. Пусть $\theta \in \Omega_s$ произвольный марковский источник с памятью s, $0 \le s < \infty$, и $\left\{T_N\right\}$ - последовательность кодовых множеств, удовлетворяющая условию теоремы. Рассмотрим кодирование Φ_N , которое каждому слову $u \in T_N$ ставит в соответствие слово $\Phi_N\left(u\right)$ длины

$$\left| \varphi_N \left(u \right) \right| = \left| -\log \overline{P}_s \left(u \right) \right|, \ u \in T_N$$

где $\bar{P}_{s}(u)$ определяется равенством (13).

Для слов с длинами кодовых слов $|\phi_N(u)|$, $u \in T_N$, определенных равенствами (16), выполняется неравенство Крафта [2-4] и, следовательно, дешифруемое кодирование с такими длинами кодовых слов существует. Оценим избыточность предложенного кодирования. Из определения избыточности (9) и из (18) имеем:

$$r_{VV}(T_N, \theta, \varphi_N) = \frac{\sum_{u \in T_N} P_{\theta(T)}^0(u) \cdot \left[\log \overline{P}_s(\theta) \left[-H(\theta) \right] \right]}{d_s(T_N, \theta)}.$$

(19) Учитывая, что]x[< x+1, из (19) получаем:

$$r_{VV}(T_N, \theta, \varphi_N) = \frac{-\sum_{u \in T_N} P_{\theta(T_N)}^0(u) \cdot \log \overline{P}_s(u)}{d_s(T_N, \theta)} - \frac{1}{d_s(T_N, \theta)}.$$
(20)

Учитывая (15), последнее неравенство можно переписать в виде:

$$r_{VV}(T_N, \theta, \varphi_N) \leq \frac{\sum_{v \in A^s} \sum_{u \in T_N} P_{\theta(T_N)}^0(u) \cdot r_v(u) \cdot F_s(u)}{d(T_N, \theta)} - \frac{k - 1 \sum_{v \in A^s} \sum_{u \in T_N} P_{\theta(T_N)}^0(u) \cdot r_v(u) \cdot F_s(u)}{d(T_N, \theta)}$$

$$-H(\theta) + + \frac{\frac{k-1}{2} \sum_{v \in A^{s}} \sum_{u \in T_{N}} P_{\theta(T_{N})}^{0}(u) \cdot \log \hat{r}_{\alpha}(u) + c}{d(T_{N}, \theta)} + \frac{1}{d_{s}(T_{N}, \theta)}.$$

$$(21)$$

Из определения квазиэнтропии $F_s(u)$ (17) неравенства Иенсена для функции $-x\log x$ и тождеств Вальда (6), (7) и определения величины $d\left(T_N,\theta\right)$, см. (5), получаем:

$$\frac{\sum_{v \in A^s} \sum_{u \in T_N} P_{\theta(T_N)}^0(u) \cdot r_v(u) \cdot F_s(u)}{d(T_N, \theta)} - H(\theta) \le 0 \quad (22)$$

Из неравенств Иенсена для функции $\log x$, тождеств Вальда (6), (7) и равенства (5) заключаем, что

$$\sum_{u \in T_N} P_{\theta(T_N)}^0 \log(|u| - s) \le \log(d_s(T_N, \theta) - s). \tag{23}$$

Так как, по определению $r_{\alpha}(u) \leq |u| - s$, то с учетом (23) имеем:

ПОЛЗУНОВСКИЙ ВЕСТНИК № 2/1, 2012

$$\sum_{u \in T_N} P_{\theta(T_N)}^0 \log \hat{r}_v(u) \le \sum_{u \in T_N} P_{\theta(T_N)}^0 \log(|u| - s) \le$$

$$\le \log(d_s(T_N, \theta) - s).$$
(24)

Из (21) с учетом соотношений (22), (23), (24) окончательно вытекает

$$r_{VV}(T_N, \theta, \varphi_N) \le \frac{k^s(k-1)}{2} \cdot \frac{\log d(T_N, \theta)}{d(T_N, \theta)} +$$

$$+\frac{\log d(T_N,\theta)+c}{d(T_N,\theta)}$$

где $\,c\,$ не зависит от $\,\theta\,.$ Теорема доказана.

Из доказанной теоремы следует, что для множества $\Omega_{\mathcal{S}}$ марковских источников связанности s, $0 \le s < \infty$, существует универсальное неравномерное по выходу и по входу кодирование. В самом деле, пусть

$$d_{s}(T_{N}) = \min_{\theta \in \Omega_{s}} d_{s}(T_{N}, \theta)$$

Тогда справедливо следующее утверждение.

Следствие. Для избыточности $R_{VV} \left(N, \Omega_s \right)$ универсального равномерного по выходу кодирования с заданной сложностью N справедлива оценка

$$R_{VV}(N,\Omega_s) \le \frac{k^s(k-1)}{2} \cdot \frac{\log d_s(T_N)}{d_s(T_N)} + \frac{c}{d_s(T_N)}, \quad (25)$$

здесь $^{\mathcal{C}}$ - не зависит от $^{\theta}$, т.е. существует универсальное равномерное по выходу кодирование для множества источников $^{\Omega_{\mathcal{S}}}$.

Доказательство. Утверждение следствия вытекает непосредственно из теоремы. Согласно определению величин $R_{VB}(N,\Omega_s)$ и $r(T_N,\theta,\phi_N)$ имеем:

$$R_{VV}(N,\Omega_s) \le \sup_{\theta \in \Omega} r_{VV}(T_N, \varphi_N, \theta).$$
 (26)

Учитывая, что при $\frac{x}{x}$, стремящемся к бесконечности, функция $\frac{\log x}{x}$ является убывающей, из неравенства (26) и теоремы 1 вытекает справедливость оценки (25). Правая часть (25) не зависит от θ и с ростом N стремится к нулю, потому что

$$d_{s}(T_{N}) \ge u(N) = \min_{u \in T_{N}} u$$

а u(N) стремится к бесконечности с ростом N . Таким образом, доказано, что избыточность $R_{VV}(N,\Omega_s)$ универсально равномерного по выходу кодирования стремится к нулю, т.е. для множества источников Ω_S существу-

ет универсальное кодирование. Следствие доказано.

Кодирование типа VV для стационарных источников

В этом параграфе доказаны основные утверждения работы. Имеет место утверждение.

Теорема 2. Для множества всех стационарных источников Ω_{∞} существует слабоуниверсальное равномерное по выходу и входу кодирование.

Доказательство. Каждый стационарный источник θ , $\theta \in \Omega_{\infty}$, задается условными вероятностными распределениями $\theta_s\left(a_i\middle|v\right)$, $a_i\in A$, $v\in A^s$, где $s=0,1,2,\ldots$ появления буквы a_i после блока v. Таким образом, каждый стационарный источник θ определяет последовательность марковских источников θ_s , $s=0,1,2,\ldots$, при s, стремящемся к бесконечности, энтропия $H\left(\theta_s\right)$ источника θ_s , не возрастая, сходится к энтропии $H\left(\theta\right)$ источника θ , точнее, справедливы соотношения:

$$H(\theta_0) \ge H(\theta_1) \ge \dots \ge H(\theta_s) \ge H(\theta_{s+1}) \ge \dots$$
 (27)

Для любого фиксированного s, $0 \le s < \infty$, определена стоимость кодирования $C_{VV}\left(T,\theta,\phi\right)$ (см.[8]). Покажем, что стоимость $C_{VV}\left(T_N^s,\theta,\phi^s\right)$ для кодирования типа VV, предложенного ранее, при N и s, стремящимися к бесконечности, существует и равна энтропии источника $H\left(\theta\right)$. Для этого нам нужно установить, что избыточность кодирования $r_{VV}\left(T_N^s,\theta,\phi_N^s\right)$ для стационарного источника $\theta,\theta\in\Omega_\infty$ стремится к нулю с ростом N и s.

Согласно определению (18) имеем

$$r_{VV}\left(T_N^s, \theta, \varphi_N^s\right) = c_{VV}\left(T_N^s, \theta, \varphi_N^s\right) - H\left(\theta\right)$$
 (28)

или

$$r_{VV}\left(T_{N}^{s}, \theta, \varphi_{N}^{s}\right) = \left(c_{VV}\left(T_{N}^{s}, \theta, \varphi_{N}^{s}\right) - H(\theta)\right) + H(\theta_{s}) - H(\theta).$$
(29)

В равенстве (29) первое слагаемое в правой части, согласно следствию из предыдущего параграфа, ограничено асимптотически сверху величиной

$$\frac{k^s(k-1)}{2} \cdot \frac{\log d_s\left(T_{_N}^s\right)}{d_s\left(T_{_N}^s\right)}.$$
 (30)

РАЗДЕЛ IV. МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ И ДАННЫХ

Из соотношения (27) и (30) следует, что с ростом s второе слагаемое также стремится к нулю. Если выбрать

$$s = o\left(\log d_s\left(T_{N}^{s}\right) - \log\log u_s\left(T_{N}^{s}\right)\right),$$

то первое и второе слагаемые правой части равенства (29) стремятся к нулю с ростом N. Тогда из (28) вытекает, что

$$\lim_{N\to\infty} r_{VV}\left(T_N^s,\theta,\varphi_N^s\right) = 0$$

т.е.

$$\lim_{N\to\infty} C_{VV}\left(T_N^s, \theta, \varphi_N^s\right) = H\left(\theta\right)$$

Теорема доказана.

Из теоремы 2 следует, что существует кодирование, при котором для любого фиксированного источника $\,\theta\,$ из $\,\Omega_{\scriptscriptstyle \! \infty}\,$ его избыточность стремится к нулю. Однако это стремление не является равномерным по множеству источников Ω_{∞} . Как доказано в теореме 1 и ее следствии, для множества марковских источников Ω_s с памятью s стремление к нулю избыточности является равномерным по Ω_s . Нижеследующее утверждение дает ответ на вопрос о равномерной сходимости к нулю избыточности для произвольного множества источников $\Omega \in \Omega_{\infty}$, т.е. о существовании универсального неравномерного по выходу и входу кодирования для подмножества источников Ω_{∞} .

Теорема 3. Для существования универсального неравномерного по выходу и входу кодирования для множества источников Ω необходимо и достаточно, чтобы при s, стремящемся к бесконечности, энтропия $H(\theta_s)$ сходилась равномерно по θ , $\theta \in \Omega$ к энтропии $H(\theta)$.

Доказательство. Необходимость. Пусть $H(\theta_s)$ сходится равномерно по θ к $H(\theta)$ на множестве Ω при $s \to \infty$. Согласно определению, для любой последовательности кодовых множеств $\left\{T_{\scriptscriptstyle N}^s\right\}, N=1,2,\ldots, 0 \le s < \infty$ справедливо равенство

$$r_{VV}(T_N^s, \theta, \varphi_N) = r_{VV}(T_N^s, \theta_s, \varphi_N) + (H(\theta_s) - H(\theta))$$

Так как $r_{\!\scriptscriptstyle VV}\!\left(T_{\scriptscriptstyle N}^s,\theta_s,\phi_{\scriptscriptstyle N}\right)\!\geq\!0$, то из последнего равенства имеем

$$(H(\theta_s) - H(\theta)) \le r_{VV} (T_N^s, \theta, \varphi_N) =$$

$$= r_{VV} (T_N^s, \theta_s, \varphi_N) + (H(\theta_s) - H(\theta)).$$
(31)

Согласно следствию, из (25) и (31) имеем:

$$r_{VV}\left(T_{N}^{s}, \theta, \varphi_{N}\right) \leq \frac{k^{s}(k-1)}{2} \cdot \frac{\log d_{s}(T_{N}^{s})}{d_{s}(T_{N}^{s})} + \frac{c}{d(T_{N}^{s})} + \left[H(\theta_{s}) - H(\theta)\right].$$
(32)

По условию теоремы существует S_0 такое, чтобы для всех $\theta \in \Omega_s$, при $s > s_0$ выполнялось неравенство

$$0 \le H(\theta_s) - H(\theta) < \frac{\varepsilon}{2}. \tag{33}$$

Величина
$$rac{k^{s_0}(k-1)\log d_{s_0}\left(T_N^{s_0}
ight)+c}{2d_{s_0}\left(T_N^{s_0}
ight)}$$
 не

зависит от θ , и при $N \! o \! \infty$ стремится к нулю, следовательно, существует N_0 такое, что

при $N>N_0$ эта величина меньше $\frac{1}{2}$. Таким образом, при сделанных предположениях избыточность $r_{VV}\left(T_N^s,\theta,\phi_N\right)$ стремится к нулю равномерно относительно множества источников Ω .

Достаточность. Если $H(\theta_s) - H(\theta)$ не стремится к нулю равномерно по множеству Ω , то из (29), точнее, из нижней оценки (31), следует, что для любой последовательности кодовых множеств $T_N^{\mathcal S}$ избыточность $r_{_{VV}}\left(T_N^s,\theta,\phi_N\right)$ не стремится к нулю равномерно по множеству Ω . Теорема доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шеннон, К. Математическая теория связи. Работы по теории информации и кибернетике/ К.Шеннон М.: 1969. С.243–332.
- Яглом А.М. Вероятность и информация/ А.М.Яглом, Яглом И.М. – М.: Наука, 1973,- 511 с.
- 3. Фано, Р. Передача информации. Статистическая теория связи./ Р.Фано М.: 1965, 440 с.
- Галлагер, Р. Теория информации и надёжная связь./ Р.Галагер – М.: 1974. – 720 с.
- Могульский, А.А. Тождество Вальда и стоимость кодирования для цепей Маркова. //
 А.А.Могульский, В.К.Трофимов. VII Всесоюзная конференция по теории кодирования и передачи информации. Доклады // Теория информации. Москва-Вильнюс. 1978., ч.І. С. 112–116

ПОЛЗУНОВСКИЙ ВЕСТНИК № 2/1, 2012

АЛГОРИТМЫ ОБРАБОТКИ ДАННЫХ В ГЕОИНФОРМАЦИОННОЙ СИСТЕМЕ ДЛЯ УЧЕТА ЗЕМЕЛЬНЫХ УЧАСТКОВ

- 6. Кричевский, Р.Е. Связь между избыточностью кодирования и достоверностью сведений об источнике // Р.Е.Кричевский. Пробл. передачи информ. 1968. Т.4. №3. С.48–57.
- Гильберт, Э.Н. Двоичные кодовые системы переменной длины. // Э.Н.Гильберт, Э.Ф.Мур. Кибернетический сборник. – М.: 1961, № 3, С.103–141.
- 8. Ходак, Г.Л. Оценки избыточности при пословном кодировании сообщений, порождаемых бернуллиевским источником. // Г.Л.Ходак. Пробл. передачи информ. 1972. Т.8. № 2. С.21—32.
- Khodak, G.L. Coding of Markov Sources With Low Redundancy // G.L.Khodak. Proc. of 2nd International Symp. On Inform. Theory Tsahkadzor, Armenia. USSR, 1971, Akademiai Kiado. Budapest. 1973. P.201–204.
- Jelinek, F. On Variable-Length to Block Coding // F.Jelinek, K.Shneider. IEEE Trans. Inform. Theory. –1972. V.18, №.6. P.756–774.
- Трофимов, В.К. Эффективное кодирование блоками слов различной длины, порождённых известным марковским источником // В.К.Трофимов. Обработка информации в системах связи. – Л.: 1985. С.9–15.
- 12. Ziv, J. Variable-to-Fixed Length Codes are Better than Fixed-to-Variable Length Codes for Marcov Sources // J.Ziv. IEEE Trans. Inform. Theory. 1990. V.36. №.4. P.861–863.
- Трофимов В.К. Неравномерное по входу кодирование сообщений, порожденных стационарным источником// Трофимов В.К., Агульник В.И., Резван И.И. Ползуновский вестник. Измерение, информатизация, моделирование: проблемы и перспективы технологий разра-

- ботки и применения, №3/1, Барнаул, 2011. C.224-229.
- 14. Krichevskii, R.E. The Performace of Universal Encoding // R.E.Krichevskii, V.K.Trofimov. IEEE Trans. on Inform. Theory. 1981. V.IT-27. №2. P.199–207.
- Shtarkov, Yu.M. Combinatorial Encoding for Discrete Stationary Sources // Yu.M.Shtarkov,.
 V.F.Babkin. Proc. of 2nd International Symp. On Inform. Theory Tsahkadzor, Armenia. USSR, 1971, Akademiai Kiado. Budapest. 1973., P.249–256
- 16. Трофимов В.К. Слабоуниверсальное равномерное по выходу кодирование // В.К.Трофимов. Вестник СибГУТИ, 2010. №2, С.101-111.
- Трофимов В.К. Равномерное по выходу кодирование марковских источников при неизвестной статистике// В.К.Трофимов. V международный симпозиум по теории информации. Доклады. Москва Тбилиси, 1979. ч.II, С.172–175.
- Krichevsky, R. Universal Compression and Retrieval.// R.Krichevskii. Dordrecht/Boston/London: 1994. P.219.

Д.т.н., профессор, декан факультета информатики и вычислительной техники **Трофимов В.К.**, тел. (383) 269-82-70, e-mail: trofimov@sibsutis.ru; и.о.доцента Агульник В.И., тел. (383) 269-82-71, e-mail: agulnik@sibsutis.ru; к.т.н., доцент Резван И.И., е-mail: rezvan@rambler.ru; Сибирский государственный университет телекоммуникаций и информатики (г. Новосибирск).

УДК 681.518

АЛГОРИТМЫ ОБРАБОТКИ ДАННЫХ В ГЕОИНФОРМАЦИОННОЙ СИСТЕМЕ ДЛЯ УЧЕТА ЗЕМЕЛЬНЫХ УЧАСТКОВ

С.В. Еремеев

В статье рассмотрены вопросы, связанные с разработкой и реализацией алгоритмов построения и учета земельных участков. Показана возможность загрузки координат из внешнего файла, на основе которых осуществляется построение земельного участка на карте. На основании сформулированных правил в виде топологических отношений между слоями производится учет объектов, расположенных на земельном участке. Разработан программный модуль для внедрения в муниципальную ГИС

Ключевые слова: геоинформационная система, земельные участки, кадастровый паспорт, топологические отношения

Введение

В последнее время в связи с динамическим развитием городской инфраструктуры у муниципальных служб и граждан возрастает потребность в получении актуальной картографической информации с ее привязкой к местности. Все более очевидной и актуальной становится задача создания и широкого

использования единой общегородской справочно-картографической информационной системы, которая могла бы удовлетворить большинство запросов разнообразных пользователей. Для решения задач эффективного хранения, оперативного извлечения данных об объектах городской территории и выполнения с ними аналитических операций наи-

C.B. EPEMEEB 121