РАЗДЕЛ IV. ПРИБОРЫ И МЕТОДЫ КОНТРОЛЯ

твёрдой фазы и, как следствие, от их способности связывать воду. Возможно, при приближении к порогу протекания возрастает погрешность измерения, обусловленная неустойчивостью системы при переходе воды из связанного состояния в рыхлосвязанное.

Выводы

Проведённые исследования показывают:

- Датчик на основе микрополоскового резонатора применим для измерения влажности почвы. Мобильность прибора позволяет использовать его в полевых условиях для оперативной оценки характеристик почв, например, на учебной практике студентов-геологов и почвоведов.
- Измерение изменения частоты автодина позволяет устранить неоднозначность в определении влажности почвы, возникающую при использовании измерения только амплитуды сигнала, когда значения напряжения зависят от содержания и влаги и проводящих примесей в почве.
- На качественном уровне наблюдается слабая зависимость между измеряемыми величинами и характеристики почвы, такими как: гранулометрический состав, содержание гумуса, химический состав, гидролитическая кислотность, pH_{KCI}.

Для выявления чёткой взаимосвязи между показаниями прибора и характеристиками почв требуется проведение многофакторного корреляционного анализа.

СПИСОК ЛИТЕРАТУРЫ

- Микроволновая термовлагометрия. [Текст] / П.А. Федюнин, Д.А. Дмитриев, А.А. Воробьев, В.Н. Чернышов/. – М.: Изд-во Машиностроение-1, 2004. – С. 6 – 8.
- Сусляев В.И. Контроль истощения ионообменных фильтров тепловых электростанций микроволновыми датчиками. [Текст] / В.И. Сусляев, В.А. Журавлёв, Е.Ю. Коровин / Ползуновский вестник, 2011.– № 3/1.– С. 109–111.
- А.с. 1720032 СССР, G 01 R 27/26. Ячейка для измерения диэлектрической постоянной жидкости. [Текст] / Б.А. Беляев, В.А. Журавлев, В.В. Тюрнев, В.И. Кириченко, В.И. Сусляев (СССР). – № 4746169/09: заявл. 30.10.1989; опубл. 15.03.1992, Бюл. № 10. – 3 с.
- Кочеткова Т.Д. Мобильный прибор на основе нерегулярного микрополоскового резонатора для измерения влажности почв.[Текст] / Т.Д. Кочеткова, В.И. Сусляев, Е.Ю. Коровин, В.А. Журавлёв //Доклады ТУСУРа. – 2011.– № 2 (24), часть 1. – С. 249-252

Доцент **Т.Д. Кочеткова** – tdk_tomsk @mail2000.ru; доцент **В.И. Сусляев** – <u>susl</u> <u>@mail.tsu.ru;</u> к. ф.-м. н., доцент **В.А. Журавлёв** – ptica @mail.tsu.ru; к. ф.-м. н., ст. преподаватель **Е.Ю. Коровин** – korovin_ey @mail.tsu.ru – кафедра радиоэлектроники Томского государственного университета (ТГУ), (382-2)41-39-73; зам. директора по учебной работе, к. биол. н., доцент **Т.П. Соловьёва** – decan @bio.tsu.ru, – Биологический институт ТГУ (382-2)52-98-53, 634050 г.Томск, пр. Ленина, 36.

УДК 620.179.14

ВИХРЕТОКОВЫЙ КОНТРОЛЬ ВНУТРЕННЕГО ДИАМЕТРА ТРУБ

А.Е. Гольдштейн, В.Ф. Булгаков, Е.В. Якимов, Е.И. Уразбеков

Рассматривается техническая реализация метода вихретокового контроля внутреннего диаметра труб из ферромагнитной и аустенитной сталей. Описаны используемая конструкция вихретокового преобразователя, алгоритм преобразования его сигналов, структурная схема системы контроля, методика ее калибровки.

Ключевые слова: вихретоковый преобразователь, математическая модель, амплитудно-фазовое преобразование, система вихретокового контроля.

Введение

В ряде практических случаев возникает задача контроля внутреннего диаметра труб. В процессе эксплуатации труб такая задача может быть связана с необходимостью контроля возможного изменения внутреннего диаметра в результате пластической деформации, вызванной механическими воздействиями на наружную или внутреннюю поверхности (сопряженными часто с одновременными термическими воздействиями) либо значительными коррозионными повреждениями внутренней поверхности. В случае если труба изготовлена из электропроводящего материала, может быть обеспечен доступ внутрь трубы, длина трубы не превышает нескольких десятков метров, с успехом может быть применен вихретоковый метод контроля. Конкурентными преимуществами вихретокового метода по сравнению с альтерна-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3/2, 2012

тивными методами контроля являются отсутствие необходимости контакта с поверхностью трубы (что особенно актуально в случае наличия механических и коррозионных повреждений поверхности, а также различных загрязнений), высокая скорость контроля, широкий диапазон измеряемых диаметров труб (реально от нескольких миллиметров до нескольких метров), простота калибровки, малое влияние внешних факторов, отсутствие необходимости доступа к наружной поверхности трубы, возможность автоматизации процесса контроля и протоколирования его результатов. При определенных условиях контроля абсолютная погрешность измерений может не превышать десятых долей миллиметра, что удовлетворяет требованиям широкого круга практических задач.

Используемый метод контроля.

Для решения поставленной задачи наиболее подходит трансформаторный вихретоковый преобразователь (ВТП), конструкция которого схематично показана на рисунке 1. По физической сущности ВТП является накладным. Переменным током *İ*, протека-

Задача измерения внутреннего диаметра трубы, по сути, сводится к классической для вихретокового метода контроля задаче измерения зазоров между накладным вихретоковым преобразователем и поверхностью электропроводящего объекта. Поэтому для создания модели взаимодействия магнитного поля вихретокового преобразователя с объектом контроля могут быть использованы известные математические выражения, приведенные в частности в [1]. При этом используем допущения, что обмотки имеют бесконечно малое поперечное сечение, а глубина проникновения электромагнитного поля меньше толщины стенки трубы.

Начальные напряжения измерительных и компенсационной обмоток определяются взаимоиндуктивностями *М*_i между соответствующей обмоткой и обмотками возбуждения:

$$U_{0i} = j \omega M_i \dot{I} \tag{1}$$

где *i* – номер обмотки в соответствии с рис. 1; ω – угловая частота тока возбуждения. Значение взаимоиндуктивности *M_{ii}* меж-

Рисунок 1 – ВТП внутри контролируемой трубы: 1, 2 – обмотки возбуждения; 3, 4 – измерительные обмотки; 5 – компенсационная обмотка.

ющим через последовательно соединенные и согласно включенные обмотки возбуждения 1 и 2, создается переменное магнитное поле, наводящее вихревые токи в поверхностном слое контролируемой трубы. Измерение индуцированных вихревых токов осуществляется с помощью измерительных обмоток 3 и 4. Обмотка 5 используется для компенсации начальных напряжений измерительных обмоток. Число витков обмотки 1 – *w*₁ равно числу витков обмотки 2 – w₂, число витков обмотки 3 - w₃ равно числу витков обмотки 4 - w₄, а соотношение чисел витков компенсационной и измерительных обмоток η должно обеспечивать равенство начальных напряжений этих обмоток.

ду двумя коаксиальными обмотками с числами витков *w_i* и *w_j* и радиусами *R_i* и *R_j* с достаточной степенью точности может быть найдено с использованием выражения:

$$M_{ij} = \pi \,\mu_0 \,w_i \,w_j \sqrt{R_i R_j} \int_0^\infty \exp\left(-\frac{h_{ij}}{\sqrt{R_i R_j}} x\right) \times J_1\left(\sqrt{\frac{R_i}{R_j}} x\right) \times J_1\left(\sqrt{\frac{R_j}{R_i}} x\right) dx, \qquad (2)$$

где μ_0 – магнитная постоянная; h_{ij} – расстояния между плоскостями витков обмоток; J_1 – функция Бесселя первого рода первого порядка; *x* – параметр интегрирования.

А.Е. ГОЛЬДШТЕЙН, В.Ф. БУЛГАКОВ, Е.В. ЯКИМОВ, Е.И. УРАЗБЕКОВ

РАЗДЕЛ IV. ПРИБОРЫ И МЕТОДЫ КОНТРОЛЯ

С использованием (2) могут быть найдены значения взаимоиндуктивностей

$$M_{3} = M_{31} + M_{32}; \quad M_{4} = M_{41} + M_{42}$$

$$M_{5} = M_{51} + M_{52}.$$
(3)

Выражения (3) в соответствии с (2) можно записать как произведения чисел витков измерительных либо компенсационной обмоток и соответствующих функций расстояний между обмотками и радиусов обмоток: $M_3 = w_3 Q_3; M_4 = w_4 Q_4$ и $M_5 = w_5 Q_5$.

Нетрудно заметить, что при одинаковых расстояниях между соседними обмотками a, одинаковых радиусах витков измерительных и компенсационной обмоток R_2 и одинаковых радиусах витков обмоток возбуждения R_1 получаем $M_3 = M_4$, $M_5 = 2M_{51} = 2M_{52}$, а необходимое для компенсации начальных напряжений условие равенства $M_3 = M_4 = M_5$ может быть выполнено при соотношении чисел витков компенсационной и измерительных обмоток

$$\eta = \frac{w_5}{w_3} = \frac{w_5}{w_4} = \frac{Q_3}{Q_5} = \frac{Q_4}{Q_5} \,. \tag{4}$$

Функции Q₃, Q₄ и Q₅ определяются с использованием выражения (2).

На рисунке 2 показана зависимость величины η от относительного значения расстояния между соседними обмотками $a^* = \frac{a}{\sqrt{R_1R_2}}$ и отношения *t* радиусов обмоток

возбуждения и измерительных обмоток.

Рисунок 2 – Зависимость соотношения числа витков η от относительного значения расстояния между соседними обмотками а* и отношения радиусов витков t.

Для определения вносимого напряжения ВТП (рисунок 1), определяемого взаимодействием его магнитного поля с электропроводящей трубой, воспользуемся выражением для трансформаторного накладного ВТП с двумя обмотками *i* и *j* над полупространством с плоской границей раздела *k*:

$$\dot{U}_{\text{BH}ijk} = j\pi\mu_0 w_i w_j \omega \dot{I} \sqrt{R_i R_j} \int_0^\infty \dot{\phi}_{\text{ok}} \exp\left(-\frac{h_{ik} + h_{jk}}{\sqrt{R_i R_j}} x\right) \times J_1\left(\sqrt{\frac{R_i}{R_j}} x\right) \times J_1\left(\sqrt{\frac{R_j}{R_i}} x\right) dx, \qquad (5)$$

где h_{ik} – расстояние между плоскостью витков обмотки *i* и границей раздела *k*; h_{jk} – расстояние между плоскостью витков обмотки *j* и границей раздела *k*; $\dot{\varphi}_{ok}$ – функция влияния объекта контроля.

Как отмечается в [1], результаты взаимодействия накладного ВТП с электропроводящим объектом, имеющим криволинейную поверхность, такую как в случае трубы, по структуре интегральных выражений аналогичны (5) с поправкой на их численные значения, обусловленной кривизной поверхности объекта контроля. Поэтому в нашем случае из соображений упрощения решения целесообразно использовать для определения $U_{\rm BH}$ выражение (5), а расхождение с реальным результатом учесть при калибровке измерителя диаметра.

Аналогичное соображение целесообразно использовать и относительно величины $\dot{\phi}_{\rm ox}$. Поскольку для уменьшения влияния изменений электромагнитных свойств материала трубы рекомендуется использовать высокую частоту тока возбуждения, в этом случае $|\dot{\phi}_{\rm ox}| \rightarrow 1$, а амплитуда $U_{\rm BH}$ стремится к максимальному для данного зазора значению. Поэтому примем допущение, что в нашем случае $|\dot{\phi}_{\rm ox}| = 1$, а некоторое отличие от реального результата взаимодействия можно учесть при калибровке.

С учетом принятых допущений амплитудное значение суммарного вносимого напряжения измерительной обмотки 3 и компенсационной обмотки 5 *U*_{вн1}, возникающее в результате взаимодействия магнитного поля обмоток возбуждения 1 и 2 с верхней *A* и нижней *B* поверхностями электропроводящего объекта (рисунок 1), определяется следующим образом:

ВИХРЕТОКОВЫЙ КОНТРОЛЬ ВНУТРЕННЕГО ДИАМЕТРА ТРУБ

$$U_{\rm BH1} = U_{\rm BH31A} + U_{\rm BH31B} + U_{\rm BH32A} + U_{\rm BH32B} - -U_{\rm BH51A} - U_{\rm BH51B} - U_{\rm BH52A} - U_{\rm BH52B}.$$
 (6)

Аналогичным образом определяется амплитудное значение суммарного вносимого напряжения измерительной обмотки 4 и компенсационной обмотки 5 *U*_{вн2}, возникающее в результате взаимодействия магнитного поля обмоток возбуждения 1 и 2 с верхней *A* и нижней *B* поверхностями электропроводящего объекта:

Рисунок 3 – Зависимость U^{*}_{вн1} от расстояния h_{x1} для разных значений отношения радиусов витков t.

$$U_{\rm BH2} = U_{\rm BH41A} + U_{\rm BH41B} + U_{\rm BH42A} + U_{\rm BH42B} - -U_{\rm BH51A} - U_{\rm BH51B} - U_{\rm BH52A} - U_{\rm BH52B}$$
(7)

Слагаемые в выражениях (6) и (7) определяются с использованием (5).

Зависимости $U_{\rm BH1}$ и $U_{\rm BH2}$ от расстояний $h_{\rm X1}$ и $h_{\rm X2}$ между корпусом ВТП и поверхностью объекта контроля (рис. 1) имеют одинаковый характер. На рис. 3 показана зависимость тносительного вносимого напряжения $U_{\rm BH1}^*$ т величины $h_{\rm X1}$. Для нормирования значений величины $U_{\rm BH}$ использовано максимальное значение вносимого напряжения $U_{\rm max}^*$, соответствующее значению расстояния $h_x = 0$.

На рисунке 4 показана обратная зависимость $h_x = f(U_{\text{вн}})$, используемая для определения расстояния h_{x1} по результату измерения $U_{\text{вн1}}$ и расстояния h_{x2} по результату измерения $U_{\text{вн2}}$.

Анализ полученной зависимости $h_{\rm x} = f(U_{\rm \tiny BH})$ показывает, что с высокой степе-

Рисунок 4 – Функция преобразования $h_{x1}(U_{\text{вн1}})$ – (1) и ее аппроксимация логарифмическими функциями (2, 3).

нью точности в интервале изменения расстояния *h_x* от *h_i* до *h_{i+1}* она может быть аппроксимирована логарифмическими функциями вида:

$$h_{x} = -K_{i} \ln\left(\frac{U_{\text{\tiny BH}}}{U_{i}}\right) + h_{i}, \qquad (8)$$

где K_i – постоянный множитель, определяемый при первичной калибровке; U_i – значение вносимого напряжения, соответствующее расстоянию h_i и определяемое при калибровке измерителя перед началом измерений. В случае относительно малого зазора между корпусом ВТП и внутренней поверхности трубы либо невысоких требований к точности измерения зависимость $h_x = f(U_{\text{вн}})$ во всем диапазоне изменений расстояния h_x может быть аппроксимирована одной функцией:

$$h_{x} = -K \ln\left(\frac{U_{\text{вн}}}{U_{\text{max}}}\right).$$
(9)

Измеряемое значение внутреннего диаметра трубы *D* находится суммированием трех слагаемых: измеренных значений *h*_{x1} и *h*_{x2} и диаметра корпуса ВТП *h*₀.

Система контроля внутреннего диаметра труб.

Описанный метод был реализован в системе контроля внутреннего диаметра труб, являющейся по принципу построения компьютерным средством измерения. На рисунке 5 показана структурная схема системы контроля, состоящей из генератора 1, измери-

А.Е. ГОЛЬДШТЕЙН, В.Ф. БУЛГАКОВ, Е.В. ЯКИМОВ, Е.И. УРАЗБЕКОВ

Рисунок 5 – Структурная схема системы измерения внутреннего диаметра труб.

тельного зонда 2, схемы амплитуднофазовой обработки сигналов 3, платы сбора данных 4, персонального компьютера 5.

В состав измерительного зонда входят ВТП и предварительные усилители. Гармонические выходные напряжения измерительного зонда, пропорциональные вносимым напряжениям $\dot{U}_{\rm вн1}$ и $\dot{U}_{\rm вн2}$ преобразуются амплитудно-фазовыми детекторами блока 3 в постоянные напряжения, пропорциональные действительным и мнимым составляющим функций преобразования (8) или (9), вычисление значения *D* и его сравнение с установленными пороговыми значениями, индикацию результатов контроля.

На рисунке 6 показан внешний вид панели индикации системы контроля, на которой отображается график изменения значений диаметра по длине контролируемой трубы 1 и уровни разбраковки 2 и 3.

Для калибровки системы контроля в варианте использования функции преобразова-

Рисунок 6 – Внешний вид панели индикации результатов контроля.

вносимых напряжений. Далее эти напряжения преобразуются в цифровую форму и передаются в персональный компьютер с помощью платы сбора данных, в качестве которой используется модуль USB3000, поддерживающий пакет прикладного программного обеспечения LabView. С использованием этого же программного обеспечения разработана программа вычислительной обработки сигналов измерительной информации, предусматривающая цифровую фильтрацию сигналов, определение амплитуд вносимых напряжений $\dot{U}_{\rm вн1}$ и $\dot{U}_{\rm вн2}$, вычисление значений расстояний h_{x1} и h_{x2} с использованием

ния (9) измерительный зонд помещается внутрь контролируемой трубы либо специального аттестованного образца, изготовленного из отрезка контролируемой трубы. Зонд поочередно прижимается к внутренней поверхности трубы сначала областью расположения измерительной обмотки З ($h_{\rm x1} = 0$), а затем областью расположения измерительной обмотки 4 ($h_{\rm x2} = 0$). При этом программой калибровки производится измерение и запоминание значений вносимых напряжений $U_{\rm max}$, используемых далее в программе измерений внутреннего диаметра трубы.

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3/2, 2012

ИЗМЕРЕНИЕ РАЗМЕРОВ КАПЕЛЬ ЖИДКОСТИ, ПОЛУЧАЕМЫХ ПРИ РАЗЛИЧНЫХ РЕЖИМАХ РАБОТЫ УЛЬТРАЗВУКОВЫХ РАСПЫЛИТЕЛЕЙ

Аналогичным образом производится калибровка системы контроля в варианте использования функции преобразования (8). Отличие заключается в том, что в этом случае измеряются не только значения вносимых напряжений U_{max} , соответствующие нулевым значениям расстояний h_{x1} и h_{x2} , но и значения вносимых напряжений U_i , соответствующие фиксированным значениям расстояния h_i , задаваемых при калибровке специальными образцовыми мерами.

Вывод

В результате проведенных исследований разработана система контроля внутреннего диаметра труб, реализующая вихретоковый метод измерительного преобразования. На основе анализа результатов математического и физического моделирования определена функция вычислительного преобразования сигналов ВТП. Разработана методика калибровки системы контроля, позволяющая обеспечивать высокие метрологические параметры системы в широком диапазоне значений электрических и магнитных параметров объекта контроля. Опыт практического использования системы для контроля внутреннего диаметра труб теплообменников из аустенитных и ферромагнитных сталей показал, что в диапазонах изменений диаметра (15...35) мм и максимального зазора между корпусом преобразователя и поверхностью трубы (1...2,5) мм может быть обеспечена абсолютная погрешность измерений, не превышающая (0,1...0,3) мм.

СПИСОК ЛИТЕРАТУРЫ

 Неразрушающий контроль. Справочник. [Текст] / под ред. В.В. Клюева: в 7 томах. Т 2: в 2-х кн.: Кн. 1: Контроль герметичности. Кн. 2: Вихретоковый контроль. – М.: Машиностроение, 2003. – 688 с.

Д.т.н., зав. кафедрой **А.Е. Гольдштейн**, algol@tpu.ru; к.т.н., доцент **В.Ф. Булгаков**, bvf49@sibmail.com,; к.т.н., доцент **Якимов Е.В.**, shishkovka@mail.ru; ассистент **Уразбеков Е.И.**, Национальный исследовательский Томский политехнический университет, кафедра информационно-измерительной техники, тел. (3822) 418911.

УДК 66.069.832: 66.084.08

ИЗМЕРЕНИЕ РАЗМЕРОВ КАПЕЛЬ ЖИДКОСТИ, ПОЛУЧАЕМЫХ ПРИ РАЗЛИЧНЫХ РЕЖИМАХ РАБОТЫ УЛЬТРАЗВУКОВЫХ РАСПЫЛИТЕЛЕЙ

В.Н. Хмелев, А.В. Шалунов, А.В. Шалунова, Р.Н. Голых, Д.В. Генне

В статье представлены результаты экспериментов по определению среднего диаметра, среднеквадратичного отклонения формируемых капель и производительности распыления в зависимости от режимов ультразвукового воздействия (амплитуда и частота) и свойств распыляемых жидкостей (вязкость и поверхностное натяжение). Полученные зависимости позволяют определять все исходные параметры, необходимые для проектирования ультразвуковых колебательных систем ультразвуковых распылителей различных жидкостей.

Ключевые слова: ультразвук, аэрозоль, распыление.

Введение

На сегодняшний день, применение ультразвукового (УЗ) способа распыления ограничивает недостаточное количество научных данных, позволяющих определять дисперсные характеристики формируемых капель жидкости и производительность распыления от свойств жидкости и параметров УЗ воздействия [1,2].

Поэтому для определения размеров формируемых капель жидкости и производительности при различных режимах работы ультразвуковых распылителей и свойствах жидкостей, был проведен ряд экспериментов заключавшихся:

- в измерении среднего диаметра формируемых капель в зависимости от амплитуды и частоты УЗ воздействия;
- в измерении среднего диаметра формируемых капель в зависимости от свойств жидкости (вязкости и поверхностного натяжения);
- в измерении зависимости производительности распыления в зависимости от частоты УЗ воздействия.