ТРЕНИЕ В МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ ПРОЦЕССА ВОЛОЧЕНИЯ ТРУБ НА САМОУСТАНАВЛИВАЮЩЕЙСЯ ОПРАВКЕ

В.В. Собачкин, В.М. Душкин, В.И. Кузнецов

Рассмотрено условие равновесия самоустанавливающейся оправки при волочении труб в условиях жидкостного трения. Предложена зависимость коэффициента трения от скорости волочения как в зоне контакта трубы с оправкой, так и с волочильной матрицей.

Ключевые слова: Волочение, самоустанавливающаяся оправка, коэффициент трения, гидродинамическая теория смазки.

Увеличение длины заготовок и повышение скоростей их обработки при внедрении технологии бухтового волочения стальных труб малого диаметра на самоустанавливающейся оправке наряду с ростом производительности процесса привело к снижению его стабильности и потребовало дополнительных исследований.

Выполненные ранее теоретические и экспериментальные исследования процесса волочения труб с использованием самоустанавливающейся оправки [1,2] показали, что последняя находится в постоянном движении, совершая колебания между крайними ее положениями. Было также установлено, что причиной колебаний самоустанавливающейся оправки в очаге деформации является изменение условий трения на поверхностях контакта [3], в связи с чем движение самоустанавливающейся оправки следует рассматривать как автоколебательный процесс, при котором коэффициент трения является функцией скорости относительного перемещения контактирующих поверхностей. В этой связи уже в работе [4] (в отличие от [2]) при определении нормальных и продольных напряжений, усилия волочения, а также сил, действующих на участки оправки, коэффициент трения был принят переменным.

Известные зависимости коэффициента трения от скорости движения [5] имеют в большей степени качественный характер и не дают возможности использовать их для исследования колебаний самоустанавливающейся оправки в процессе волочения. Предложенная в работе [6] зависимость изменения коэффициента трения от скорости, построенная с использованием гидродинамической теории смазки, не учитывает изменения температуры контактирующих поверхностей.

Используя методы гидродинамической теории жидкости, рассмотрим течение смазки

между поверхностями оправки и трубы. Т.к. процесс волочения на барабанных станах с непрерывным съемом трубы протекает со скоростями порядка 15...20 метров в секунду [7], оправка в очаге деформации находится в условиях жидкостного трения и согласно данным работы [6] занимает крайнее заднее положение (рис. 1). В смазочном слое выделим пять участков: 1 - течение между цилиндрической частью трубы и оправки, 2 - цилиндрической частью трубы и конусом оправки, 3 коническими поверхностями трубы и оправки, 4 - цилиндрической поверхностью оправки и трубы обжимной зоны, 5 - цилиндрическими поверхностями трубы и оправки зоны калибровки.

Рисунок 1- Схема течения смазки в очаге деформации при волочении на самоустанавливающейся оправке

Для разделения контактирующих поверхностей и обеспечения волочения в режиме жидкостного трения давление в начале обжимного участка должно превышать давление металла на оправку, а толщина смазочного слоя должна быть больше высоты микронеровностей [2]. Принимая гипотезу о ламинарном характере движения смазки и считая её ньютоновской жидкостью, течение слоя смазки на любом из выделенных участков можно описать уравнением Навье - Стокса [8]:

ПОЛЗУНОВСКИЙ ВЕСТНИК 1/1-2012

$$\frac{\partial P}{\partial x} = \mu \frac{\partial^2 V_X}{\partial y^2}, \qquad (1)$$

где *µ* - вязкость смазки.

Интегрирование данного уравнения дважды по у с учетом того, что скорость смазки на границах слоя равна скорости поверхностей трубы и оправки, а течение жидкости в окружном направлении оправки отсутствует, даёт известную зависимость распределения скорости по толщине слоя [8]:

$$V_X = V_0(1 - \frac{y}{h}) - \frac{1}{2\mu} \frac{\partial P}{\partial x} hy(1 - \frac{y}{h}), \quad (2)$$

где *V*₀ - скорость движения трубы; *h* - толщина слоя смазки.

Зависимость вязкости смазки от давления и температуры примем согласно рекомендациям работы [8]:

$$\mu = \mu_{50} \left(\frac{t}{50}\right)^Z \exp(\lambda P), \quad (3)$$

где μ_{50} - вязкость смазки при температуре 50 °C;

t - температура;

λ - пьезокоэффициент вязкости;

z - показатель степени, зависящий от кинематической вязкости смазки.

Для определения градиента давления в уравнении (2) используем известное условие постоянства потока смазки, протекающего через произвольное сечение слоя [8]:

$$q = \int_{0}^{h} V_X \, dy. \tag{4}$$

Совместное решение уравнений (2) и (4) даёт значение градиента давления для каждого выделенного нами участка слоя смазки, а последующее интегрирование его позволяет определить величину давления жидкости каждой зоне.

Принимая, что давление в конце каждого участка слоя смазки равно начальному давлению для последующей зоны, получим:

в конце первого участка:

$$P_{1} = \frac{1}{\lambda} \ln \left[1 - 6\lambda \mu_{50} \left(\frac{t}{50} \right)^{Z} V \cdot l_{1} \frac{(1 - \mu_{\kappa} h_{_{CM}} / h_{1})}{h_{1}^{2}} \right],$$
(5)

в конце второго участка:

$$P_{2} = \frac{1}{\lambda} \ln \left| \exp(-\lambda P_{1}) - \frac{6\lambda \mu_{s0} \left(\frac{t}{50}\right)^{2} V}{tg\beta} \times \left(\frac{(1 - \mu_{K} h_{CM} / h_{1})}{h_{1}} - \frac{(1 - \mu_{K} h_{CM} / h_{2})}{h_{2}}\right) \right|,$$
(6)
в конце третьего участка:

$$P_{3} = -\frac{1}{\lambda} \ln\{\exp(-\lambda P_{2}) - 6\lambda \mu_{50} \left(\frac{t}{50}\right)^{Z} \times \left(\frac{2(D_{H} - t_{H})\ln(\mu_{1}h_{3} / h_{2})}{(D_{H} - t_{H})(tg\alpha - tg\beta) - 2h_{2}tg\alpha} + \frac{D_{H} - t_{H} + 2h_{2}tg\alpha}{2h_{CM}(D_{H} - t_{H} - 2h_{2}tg\alpha)(tg\alpha - tg\beta)}]\},$$

$$B \text{ конце четвертого участка:}$$

$$\left(\begin{array}{c} \left(t\right)^{Z} \\ \end{array}\right)$$

$$P_{4} = -\frac{1}{\lambda} \ln \begin{cases} \exp(-\lambda P_{1}) - 6\lambda \mu_{50} \left(\frac{l}{50}\right) V \mu_{K} \times \\ \times \left[\frac{D_{K} + l_{4} tg \alpha}{tg \alpha \cdot h_{3}^{2}} \ln \mu_{2} - \frac{2h_{CM} l_{4}}{h_{3}^{3}}\right] \end{cases},$$
(8)

где *h*_{CM} - толщина слоя смазки на выходе из очага деформации;

 $h_1 h_2 h_3$ - толщина слоя на участках;

V - скорость движения трубы на выходе из блока волочильных матриц;

*I*₁ *I*₂ – длина участка слоя смазки.

$$\mu_{K} = rac{D_{H} - t_{H}}{D_{K} - t_{K}}$$
 - общая вытяжка; $\mu_{1} = rac{D_{H} - t_{H}}{D_{H} - t_{H} - 2l_{4}$ tg $lpha$, $\mu_{2} = rac{D_{K} + l_{4}tg\,lpha - t_{H}}{D_{K} - t_{K}}$

вытяжка на участках 1 и 2 соответственно;

Отличием уравнений (6 - 8) от существующих решений [8] для течения смазки в зазоре между инструментом и трубой, в случае гидродинамического режима трения, является учет изменения скорости движения металла в очаге деформации за счёт вытяжки. Принимая, согласно данным работы [8], что давление смазки на выходе из очага деформации равно атмосферному, определим толщину истекающего слоя смазки:

$$h_{CM} = \frac{h_3}{2} - \frac{[exp(-\lambda P_4) - 1]h_3^3}{12\mu_{50} \left(\frac{t}{50}\right)^2 \lambda l_5 V}.$$
(9)

Совместное решение уравнений (5) - (8) позволяет определить давление в начале обжимного участка.

Касательные напряжения на поверхности оправки определим на основании закона трения вязкой жидкости [8]:

$$\tau = \mu_{50} \left(\frac{t}{50}\right)^Z \exp(\lambda P) \frac{\partial V_X}{\partial y}, \qquad (10)$$

где дифференциал скорости течения смазки на участке калибровки трубы определяется дифференцированием выражения (2) при известном градиенте давления в калибрующей части волочильной матрицы:

$$\frac{dP}{dx} = \frac{6\lambda\mu_{50} \left(\frac{t}{50}\right)^2 V(h_3 - 2h_{CM})}{h_3^3}.$$
 (11)

279

Коэффициент трения для гидродинамического режима течения смазки получим, разделив величину касательных напряжений (10) на величину нормальных напряжений для этого участка:

$$f_{r} = \tau / \sigma_n. \tag{12}$$

Величину температуры, входящей в записанные выше уравнения, найдём, используя зависимость мощности сил трения в контактной зоне при деформации слоя смазки [8]:

$$Q = \tau \cdot V \cdot S , \qquad (13)$$

где *т* - касательные напряжения на поверхности контакта;

V - скорость волочения;

S - площадь поверхности контакта.

Полагая, что всё тепло, выделяющееся за счёт сил трения, уносится из зоны деформации, температуру контактного слоя найдём по зависимости [8]:

$$t = t_0 + 2\tau / \pi d_K c_T \gamma_M k_2, \quad (14)$$

где *t*₀ - начальная температура смазки; *d*_K - внутренний диаметр трубы;

ст - удельная массовая теплоёмкость;

у_м - объёмная масса обрабатываемого металла;

*k*₂ - коэффициент, определяемый по данным работы [8].

Зависимость изменения коэффициента трения в зоне рабочих скоростей волочения, которые в большинстве случаев не обеспечивают гидродинамический режим трения, представим следующим образом:

$$f = f_n(1 - V/V_M) + f_M$$
, (15)

где *f_n= f₀-f_M;*

*f*_{*M*} – коэффициент трения при скорости волочения *V*_{*M*};

fo - коэффициент трения покоя.

$$f_M = f_0 (1 - P_M / \sigma_{nC}),$$
 (16)

где P_M – давление смазки при скорости ее течения V_{M} ;

 σ_{nc} - среднее значение нормальных напряжений на поверхности контакта материала трубы и оправки.

Таким образом, выражение (15) представляет собой зависимость изменения коэффициента трения на поверхности контакта оправки и трубы в функции скорости их относительного перемещения, давления смазки, среднего значения нормальных напряжений на поверхности контакта материала трубы и оправки и реологических свойств смазки.

При анализе напряженного состояния в качестве граничных условий использовалась модель распределения сил трения, предло-

женная в работе [9]. Задача решалась в сферической системе координат с применением допущения полной пластичности Хаара– Кармана и условия пластичности, записанного в главных напряжениях.

Упрочнение учитывалось с помощью выражения

$$\sigma_{\rm s} = \sigma_{\rm so} \left[1 + b \cdot \left(2 \ln \frac{m}{r} \right)^n \right], \qquad (17)$$

где σ_{s0} – предел текучести материала до волочения:

b и *n* – константы, характеризующие кривую упрочнения;

r — координатный радиус.

Схема очага деформации в этом случае представлена на рис. 2.

Рисунок 2 - Схема очага деформации к определению граничных условий

1 – волока, 2 – оправка, 3 – деформируемая заготовка

$$\frac{\tau_{r\varphi}}{\sigma_{s_{0}}} = a(C_{1} + C_{2} \cdot x^{3}) \cdot tg \, 0,5\varphi + \frac{(C_{3} + C_{4} \cdot x) \sin \varphi}{\sin \alpha} + ,$$

$$+ \frac{x^{1.5}(C_{5} \cdot A_{x} + C_{6} \cdot B_{x}) \sin 2\varphi}{\sin \alpha}$$

$$\frac{\sigma_{r}}{\sigma_{s_{0}}} = (2 + a \cdot C_{1}) \ln x + \frac{C_{2} \cdot a(x^{3} - 1)}{3} +$$

$$+ 6C_{1} \cdot a \cdot \ln(\cos 0,5\varphi) + \frac{(2C_{3} + C_{4} \cdot x) \cdot x \cdot \cos \varphi}{\sin \alpha} +$$

$$+ \frac{x^{1.5}[(1,5C_{5} - S \cdot C_{6}) \cdot A_{x} + (C_{6} \cdot S + 1,5C_{6}) \cdot B_{x}]}{6\sin \alpha} +$$
(18)
$$+ \frac{(1 + 3\cos 2\varphi)}{6\sin \alpha} + \frac{2b \cdot (\ln x)^{n+1}}{(n+1)} + C_{0},$$

где $A_x = cos(S \cdot lnx)$, $B_x = sin(S \cdot lnx)$, $S = \sqrt{3,75}$.

На поверхности обжимной зоны очага деформации примем $\varphi = \alpha_0$, а на поверхности оправки $\varphi = \alpha_1$.

Система уравнений для определения произвольных постоянных имеет вид $C_1 + C_2 + C_3 + C_4 + C_5 = 0,$

ПОЛЗУНОВСКИЙ ВЕСТНИК 1/1-2012

(20)

$$C_{1} + C_{2} \cdot x_{\kappa}^{3} + C_{3} \cdot x_{\kappa} + 2C_{4} \cdot x_{\kappa}^{2} + x_{\kappa}^{1.5} \times (19) \times (C_{5} \cdot A_{x\kappa} + C_{6} \cdot B_{x\kappa}) = 0,$$

$$3x_{i}^{2} + C_{3} + 2C_{4} \cdot x_{i} + \sqrt{x_{i}} \cdot [(1,5C_{5} + S \cdot C_{6}) \cdot A_{x_{i}} + (1,5C_{6} - S \cdot C_{5}) \cdot B_{x_{i}}] = 0,$$

где $A_{x_i} = A_x$, и $B_{x_i} = B_x$ при $x=x_i$, *i*=1, 2, 3.

Недостающее шестое уравнение получим, усредняя показатель трения на контактной поверхности

$$\begin{split} \psi_{1} &= \frac{\tau_{r_{\alpha,p}}}{\sigma_{S_{0}}} = \frac{\int_{S_{p}} \tau_{r_{\alpha}} \cdot dS_{p}}{S_{p} \cdot \sigma_{S_{0}}} = C_{1} + 2x_{k} \times \\ &\times \left[C_{2} \cdot x_{k} + C_{3} + \frac{C_{4} \cdot x_{k} \cdot \ln x_{k}}{(x_{k} - 1)} \right] + \\ &+ x_{k}^{2} \left\{ \frac{C_{5} \left[\left(\frac{1 - A_{x_{k}} - 2 \cdot S \cdot B_{x_{k}}}{\sqrt{x_{k}}} \right) \right]}{\frac{4}{x_{k}^{2} - 1}} + \\ &+ \frac{C_{6} \left[2S - \left(\frac{B_{x_{k}} + 2S \cdot A_{x_{k}}}{\sqrt{x_{k}}} \right) \right]}{\frac{4}{x_{k}^{2} - 1}} \right\}. \end{split}$$

Произвольную постоянную *C*₀ в уравнении (18) определим из условия силового равновесия на задней границе очага деформации;

$$C_{0} = \frac{\sigma_{u_{0}} + \sigma_{n}}{\sigma_{s_{0}}} - C_{1} \left(6a \cdot \ln \cos \frac{\alpha}{2} + \frac{1,5}{a} \right) - S_{\alpha} (2C_{3} + C_{4}) - (1,5C_{5} - S \cdot C_{6}) \cdot \frac{(1 + 3\cos 2\alpha)}{(6\sin 2\alpha)}.$$
(21)

Разработанная методика моделирования условий трения при волочении труб учитывает силовое равновесие оправки в очаге деформации, геометрические и деформационные критерии устойчивости процесса.

Реализованная в виде программного комплекса методика моделирования условий трения при волочении труб позволяет автоматизировать расчёт технологических параметров процесса, что в значительной степени сокращает время на подготовку и внедрение новых маршрутов волочения труб и позволяет проанализировать существующие маршруты волочения с целью обеспечения их устойчивости.

Экспериментальные исследования, проведённые в производственных условиях, и разработанная инженерная методика проектирования маршрутов волочения труб на са-

ПОЛЗУНОВСКИЙ ВЕСТНИК 1/1-2012

моустанавливающейся оправке подтверждают, что при разработке технологических процессов волочения профилей необходимо учитывать границы их устойчивости.

СПИСОК ЛИТЕРАТУРЫ

1. Шапиро В.Я. Экспериментальное определение перемещений самоустанавливающейся оправки // Цветные металлы. – 1961.- №11.

2. Шапиро В.Я. Применение самоустанавливающейся оправки при волочении труб. – М.: ЦНИИцветмет, 1963.

3. Биск М.Б., Грехов И.А., Славин В. Б. Холодная деформация стальных труб. - Свердловск: Сред.-Уральск.кн.изд-во. 1976.-Ч.1.

4. Антимонов А.М., Соколовский В.И., Душкин В.М. К оценке статического равновесия самоустанавливающейся оправки при волочении труб// Известия вузов. Чёрная металлургия. 1987, № 8 с. 47-51.

5. Пановко Я.Г. Введение в теорию механических колебаний. - М.: Наука, 1980.

6. Колмогоров В.Л., Орлов С.И., Селищев К.П. Волочение в режиме жидкостного трения. - М.: Металлургия, 1967.

7. Bannelli Gino. La trafillatura del tubo dirame in matasse// Rifista di Mecconica, Italia,1974, № 573, p. 25-34.

8. Колмогоров В.Л., Орлов С.И., Колмогоров Г.Л. Гидродинамическая подача смазки. - М.: Металлургия, 1975.

9. Баранов Г.Л., Кузнецов В.И. Сравнительный анализ выбранных законов трения на напряженное состояние металла в очаге деформации при волочении круглого профиля. Известия вузов. Черная металлургия №8, 1994.

Собачкин В.В., к.т.н., доцент, профессор каф. «Детали машин»,

ФГБОУ ВПО «Алтайский государственный технический университет им. И.И. Ползунова»,

Душкин В.М., к.т.н., доцент кафедры «Детали машин»,

Кузнецов В.И., к.т.н., доцент кафедры «Детали машин»,

тел. (343) 375 46 94.

«Уральский федеральный университет им. первого президента России Б.Н.Ельцина», г. Екатеринбург.