ФОРМИРОВАНИЕ ПРОДУКТОВ ФОТОЛИЗА СИСТЕМ АЗИД СВИНЦА – ТЕЛЛУРИД КАДМИЯ

С.В. Расматова, Т.Ю. Кожухова, Л.И. Шурыгина

Масс-спектрометрическим и спектрофотометрическим методами исследованы кинетические и спектральные закономерности формирования газообразного (азота) и твёрдофазного (свинца) продуктов фотолиза азида свинца в контакте с теллуридом кадмия в зависимости от интенсивности падающего света при λ =380 нм. Определены константы скорости фотолиза систем $PbN_6(A6)$ - CdTe. Показано, что формирование систем $PbN_6(A6)$ - CdTe наряду с уменьшением скорости фотолиза в области собственного поглощения $PbN_6(A6)$ приводит к расширению области спектральной чувствительности азида свинца. В результате измерения вольт-амперных характеристик, фототока, фото—ЭДС, контактной разности потенциалов предложена модель фотолиза систем $PbN_6(A6)$ - CdTe, включающая стадии генерации, рекомбинации, перераспределения неравновесных носителей в контактном поле, образования продуктов фотолиза, а также формирования гетерогенных систем $PbN_6(A6)$ — Pb (продукт фотолиза) - Pb

Ключевые слова: микрогетерогенные системы, азид свинца, фотолиз.

ВВЕДЕНИЕ

Решение задач направленного регулирования фотохимической и фотоэлектрической чувствительности неорганических солей представляет для физики и химии твердого тела многосторонний интерес [1-9]. Постановка подобных исследований, наряду с их технической актуальностью [1-4], может быть полезным инструментом для выяснения механизма процесса разложения твердых тел [5-9]. Среди разнообразных соединений, которые под действием света претерпевают необратимые превращения, особое место занимает азид свинца [10]. Относительно несложный состав и структура, высокая фоточувствительность, значительный внутренний фотоэффект, простой состав продуктов фотолиза делают азид свинца удобным модельным и практически важным объектом исследований [11]. В настоящем сообщении приведены результаты работы, направленной на исследование влияния добавки теллурида кадмия на кинетические и спектральные закономерности фотолиза азида свинца в вакууме $(1 \times 10^{-5} \text{ Па})$ и на выяснение причин. вызывающих наблюдаемые изменения теллуридом кадмия фотохимической чувствительности азида свинца.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Азид свинца (марки Аб) ($PbN_6(Aб)$) синтезировали методом двухструйной кристаллизации, одновременно сливая водные 0,2 н. растворы дважды перекристаллизованного технического азида натрия и нитрата свинца (марки х.ч.) при pH = 3 и T=293 К в течение 1—

2 с [8]. Образцы для исследований готовили тшательным перемешиванием (в сухом состоянии и в этиловом спирте) соответствующих навесок PbN₆(Аб) и теллурида кадмия (CdTe) с последующей сушкой и прессованием при давлении 1×10^3 кг см $^{-2}$ таблеток диаметром 0,5-1см. Кроме того, CdTe наносили методом термического испарения в вакууме $(1 \times 10^{-3} \text{ Па})$, используя вакуумный универсальный пост ВУП-5М, на поверхность таблеток PbN₆(Аб). При сопоставлении результатов пропускание света через CdTe учитывалось. Измерения скорости фотолиза (V_{Φ}) , фототока (i_{Φ}) и фото-ЭДС (U_{Φ}) образцов проводили на экспериментальных комплексах обеспечивающих высокий вакуум (1 × 10⁻⁵ Па). Источниками света служили ртутная (ДРТ-250) и ксеноновая (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматор МСД-1 и набор светофильтров. Актинометрию источников света проводили с помощью радиационного термоэлемента РТ-0589. В качестве датчика при измерении V_Ф использовали лампу РМО-4С омегатронного масс-спектрометра ИПДО-1, настроенного на частоту регистрации азота [7]. Для измерения i_Φ и U_Φ применяли электрометрический вольтметр В7-30, либо электрометр TR - 1501 [8]. Спектры диффузного отражения (ДО) измеряли при давлении 101,3 кПа на спектрофотометре SPECORD-M40 с приставкой на отражение 8^{0} d и в вакууме (1 \times 10⁻⁴ Па) [6] используя устройство [12]. Контактную разность потенциалов (КРП) между азидом свинца (Аб), теллуридом кадмия и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [13].

ФОРМИРОВАНИЕ ПРОДУКТОВ ФОТОЛИЗА СИСТЕМ АЗИД СВИНЦА – ТЕЛЛУРИД КАДМИЯ

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При анализе кинетических и спектральных закономерностей фотолиза $PbN_6(A\delta)$ и систем $PbN_6(A\delta)$ —CdTe было установлено, что наряду с уменьшением добавкой CdTe V_{ϕ} в собственной области поглощения $PbN_6(A\delta)$, на кривых спектрального распределения V_{ϕ} появляется новая длинноволновая область спектральной чувствительности, соответствующая области поглощения и фотоэлектрической чувствительности теллурида кадмия (рисунок 1).

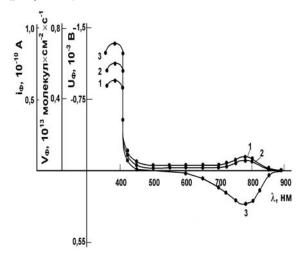


Рисунок 1. Спектральные распределения фототока (1) скорости фотолиза (2), и фото-ЭДС (3) гетеросистем PbN₆(Aб)–CdTe. I = $2 \cdot 10^{15}$ квант · cm⁻² · c⁻¹.

При воздействии на образцы светом λ = 380 нм при интенсивности более 1×10^{14} см⁻² с на кинетических кривых V_Ф проявляются характерные для азида свинца [11,14] участки: начальный (I), стационарный (II), возрастания (III) и насыщения (IV) (рис. 2). Снижение интенсивности падающего света приводит к уменьшению V_{ϕ} , а также к увеличению продолжительности участков кинетических кривых V_ф. Предварительная обработка азида свинца теплом, светом, в восстановительной среде уменьшают (вплоть до полного исчезновения) начальный максимум на кинетических кривых V_Ф. Повторное (после прерывания света на I и II участках) облучение образцов не приводит к заметному изменению значений V_{Φ} на II, III и IV участках кинетических кривых V_{Φ} . При этом V_{Φ} на участке I уменьшается (рис. 2, кривая 3). После предварительной обработки образцов светом до IV участка V_{Φ} монотонно возрастает до постоянного значения (рис. 2, кривая 4). После прекращения экспонирования образцов PbN₆(Аб)-СdТе на разных участках кинетических кривых V_{φ} наблюдается постгазовыделение (рис. 2, участок V). Видно, что кривые постгазовыделения состоят из двух участков - «быстрого» и «медленного».

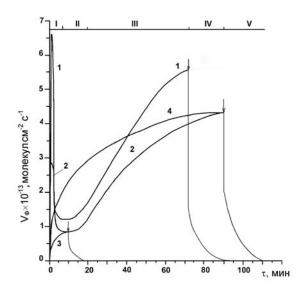


Рисунок 2. Кинетические кривые скорости фотолиза $PbN_6(A6)$ (1) и гетеросистем: $PbN_6(A6)$ -CdTe при λ = 380 нм и интенсивности падающего света 3,17 \times 10¹⁵ квант см⁻² с⁻¹ до (2) и после прерывания освещения на II (3), IV (4) участках. Стрелками обозначены моменты выключения света.

С увеличением времени экспонирования и интенсивности падающего света продолжительность постгазовыделения возрастает, а с понижением температуры сокращается за счет изменения временного интервала «медленной» составляющей. Установлено, что анаморфозы постгазовыделения, построенные в координатах $InC_{N2} = f(\tau)$, независимо от времени предварительного экспонирования и интенсивности падающего света, линейны. В табл. 1 приведены константы скорости процесса ответственного за постгазовыделение.

Таблица 1 Константы скорости постгазовыделения (k·10², c⁻¹), рассчитанные по кинетическим кривым после прерывания освещения на I, II и IV участках

Образец	I	II	IV
PbN ₆ (Aб)	$3,91 \pm 0,11$	$2,46 \pm 0,01$	$0,270 \pm 0,015$
PbN ₆ (Аб) – CdTe	3,80 ± 0,04	3,65 ± 0,05	0,318 ± 0,008

Длинноволновый край ДО $PbN_6(A6)$ [11] и систем $PbN_6(A6)$ —CdTe совпадает и составляет $\lambda \approx 410$ нм. Формирование систем $PbN_6(A6)$ —CdTe и обработка их светом из об-

ласти λ = 380 нм приводит к уменьшению ДО PbN₆(Аб) в диапазоне 410–850 нм (рис. 3).

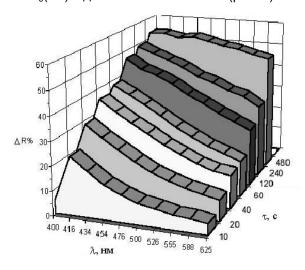


Рисунок 3. Изменение отражательной способности $PbN_6(AG)$ - CdTe в зависимости от времени облучения светом λ = 380 нм при I = 3,17 · 10¹⁵ квант см⁻² с⁻¹.

При временах облучения образцов, соответствующих временам реализации I и II участков кинетических кривых V_{φ} , наряду с уменьшением ДО в диапазоне λ = 410–850 нм, на спектральных кривых ДО проявляются размытые максимумы при $\lambda \approx 470$ и 600 нм. Дальнейшее увеличение времени световой обработки до участка IV приводит к уширению полос и смещению максимумов в длинноволновую область спектра. Были сопоставлены кинетические кривые зависимостей изменения количества фотолитического металла (Сме), рассчитанных по результатам измерений кинетических кривых V_{th} при различных интенсивностях падающего света, со значениями площадей (S), соответствующих изменению ДО систем PbN₆(Аб)-CdTe в процессе облучения (рис. 4).

Совпадение зависимостей, а также результаты представленные в [11,12,14] свидетельствует о том, что наблюдаемые в результате облучения образцов изменения на спектральных кривых ДО систем $PbN_6(A6)$ — CdTe обусловлены образованием свинца – продукта фотолиза азида свинца, а максимумы — формированием частиц свинца соответствующих размеров.

Причём, твёрдофазный (свинец) и газообразный (азот) продукты фотолиза систем образуются в стехиометрическом соотношении и, в основном, на поверхности образцов. В таблице 2 приведены константы скорости фотолиза систем $PbN_6(Aб)$ —CdTe оценённые

по тангенсу угла наклона зависимостей InS = $f(\tau)$ и InC_{Me} = $f(\tau)$.

Для выяснения энергетического строения контактов $PbN_6(A6)$ —CdTe и причин, вызывающих наблюдаемые изменения V_{φ} азида свинца в разных спектральных областях, были измерены вольтамперные характеристики (BAX), i_{φ} и U_{φ} систем $PbN_6(A6)$ -CdTe, а также измерены значения $KP\Pi$ между $PbN_6(A6)$, CdTe и электродом из платины.

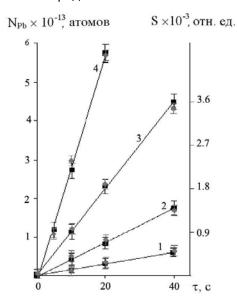


Рисунок 4. Зависимость количества фотолитического свинца (N) и площадей (S), соответствующих изменению диффузного отражения образцов PbN₆(Aб)-CdTe, при $\lambda=380$ нм от интенсивности падающего света: $1-7,85\cdot10^{14},\,2-1,27\cdot10^{15},\,3-2\cdot10^{15},\,4-3,17\cdot10^{15}$ квант см $^{-2}$ с $^{-1}$.

Таблица 2

Константы скорости фотолиза PbN₆(Aб)— CdTe, рассчитанные по кинетическим кривым скорости фотолиза ($k_{1\Phi}$) и спектрам диффузного отражения ($k_{1\text{дO}}$)

I × 10 ⁻¹⁵ ,	$k_{1\phi} \times 10^2$	$k_{1ДO} \times 10^2$
квант см ⁻² ·с ⁻¹		
0,795	$3,65 \pm 0,20$	$3,64 \pm 0,23$
1,27	$4,50 \pm 0,22$	$4,66 \pm 0,23$
2,00	$1,00 \pm 0,20$	$3,96 \pm 0,20$
3,17	$4,56 \pm 0,23$	$4,60 \pm 0,23$

В результате измерения ВАХ в диапазоне внешних напряжений (-3В - +3В) было установлено, что эффект «выпрямления» отсутствует. На рис. 1 приведены кривые спектрального распределения i_{φ} и U_{φ} систем PbN₆(Aб)-CdTe. Видно, что кривые спектрального распределения V_{φ} , i_{φ} и U_{φ} коррелируют, а знак U_{φ} со стороны PbN₆(Aб) меняется в зависимости от спектрального состава падающего света.

ФОРМИРОВАНИЕ ПРОДУКТОВ ФОТОЛИЗА СИСТЕМ АЗИД СВИНЦА – ТЕЛЛУРИД КАДМИЯ

Фотохимические проявления фотоэлектрических процессов могут быть вызваны перераспределением под действием контактного поля электрон - дырочных пар, генерированных светом в области пространственного заряда (ОПЗ) контактирующих партнёров. Согласно соотношениям термоэлектронных работ выхода контактирующих партнёров (табл. 3) [13] при сближении изолированных $PbN_6(Aб)$ и CdTe следовало ожидать эффектов «выпрямления» на BAX, а также одинакового по всему спектру, но положительного со стороны $PbN_6(Aб)$ знака U_{Φ} .

Таблица 3 Контактная разность потенциалов (В) между PbN₆(Аб), CdTe и относительным электродом из платины

Образец	Р=1 ×10 ⁵ Па	Р=1 ×10 ⁻⁵ Па
PbN ₆ (Aб)	-0,34	-0,21
CdTe	+0,24	+0,64

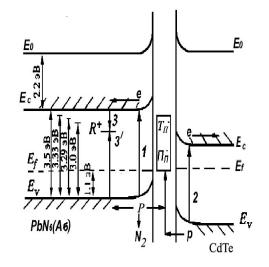


Рисунок 5. Диаграмма энергетических зон гетеросистемы PbN₆(Aб)—CdTe; Ev — уровень потолка валентной зоны, Ec — уровень дна зоны проводимости, E_F — уровень Ферми, E_0 — уровень вакуума, R^+ - центр рекомбинации.

Однако, как показали исследования эффекты «выпрямления» на ВАХ систем $PbN_6(Aб)$ -CdTe отсутствуют, а знак U_Φ не соответствует ожидаемому из соотношений работ выхода контактирующих партнеров и меняется в зависимости от спектрального состава падающего света. Эти факты, а также результаты работ [8, 13, 15] свидетельствуют о том, что на границе раздела систем $PbN_6(Aб)$ -CdTe имеются собственные поверхностные электронные состояния (СПЭС - TII-) и поверхностные электронные состояния контакта (III-CK - III-CIC - III-CIC

ма энергетических зон контактов $PbN_6(A6)$ — CdTe.

При воздействии на систему $PbN_6(A6)$ — CdTe светом из области собственного поглощения $PbN_6(A6)$ имеет место интенсивная генерация электрон—дырочных пар в $PbN_6(A6)$ и полупроводнике (рисунок 5, переходы 1,2)

$$N_3 \rightarrow p + e$$
.

Так как квантовый выход фотолиза $PbN_6(A6)$ —CdTe при экспозиции $\tau \le 1$ мин составляет 0,002 — 0,010, то часть фотоиндуцированных носителей заряда рекомбинирует (рисунок 5, переходы 3)

$$R^+ + e \rightarrow R_0 + p \rightarrow R^+$$

где R^+ центр рекомбинации. Генерированные в ОПЗ $PbN_6(A6)$ и CdTe пары носителей заряда перераспределяются в контактном поле, которое обусловлено несоответствием работ выхода контактирующих партнеров, наличием СПЭС и ПЭСК. Неравновесные дырки из валентных зон $PbN_6(A6)$ и CdTe переходят на уровни СПЭС и ПЭСК

$$T_{\Pi^{-}}(\Pi_{K^{-}}) + p \rightarrow T_{\Pi^{0}}(\Pi_{K^{0}}).$$

При экспонировании систем PbN₆(Аб)-CdTe светом из области поглощения CdTe имеет место интенсивная генерация электрон дырочных пар в CdTe (рис. 5, переход 2). Генерированные в ОПЗ CdTe неравновесные носители заряда перераспределяются в контактном поле с переходом дырок из валентной зоны на уровни СПЭС и ПЭСК. Одновременно с отмеченными переходами, которые приводят к смещению энергетических уровней у контактирующих партнеров, имеют место потоки равновесных носителей заряда. Результирующее изменение концентрации дырок в ОПЗ азида свинца приведет к соответствующему понижению V_Ф в собственной области поглощения азида и появлению фотохимического разложения в длинноволновой области спектра, соответствующей области поглощения и фотоэлектрической чувствительности теллурида кадмия, по принимаемым для фотолиза АТМ реакциям образования азота [16].

 $p + V_{\kappa^-} \to V_{\kappa}^{\ 0} + p \to V_{\kappa}^{\ +} \to 3N_2 + 2Va^+ + V_{\kappa^-},$ где V_{κ^-} и Va^+ – катионная и анионная вакансии.

Мы полагаем, что СПЭС и ПЭСК являются центрами формирования фотолитического металла с участием подвижных анионных вакансий [11] (азид свинца разупорядочен по Шоттки [17])

$$\begin{array}{l} T_\Pi^{\ 0} + 2Va^+ \rightarrow (T_\Pi 2Va)^{2^+} + 2e \rightarrow ... \rightarrow (T_\Pi Pb_n)^0, \\ \Pi_K^{\ 0} + 2Va^+ \rightarrow (\Pi_K 2Va)^{2^+} + 2e \rightarrow ... \rightarrow (\Pi_K \, Pb_n)^0. \end{array}$$

Наблюдаемое уменьшение V_{φ} на участке (I) в процессе и после предварительного

экспонирования образцов (рис. 2) подтверждает необратимый расход поверхностных центров. В процессе роста частиц фотолитического металла формируются микрогетерогенные системы PbN₆(Аб)-Pb (продукт фотолиза) [11, 14]. Генерированные в ОПЗ азида свинца пары носителей перераспределяются в контактном поле, сформированном из-за несоответствия между термоэлектронными работами выхода азида свинца и фотолитического свинца [11, 13, 14], с переходом неравновесных электронов из зоны проводимости PbN₆(Аб) в свинец. Одновременно имеет место фотоэмиссия дырок из свинца в валентную зону азида свинца. Эти процессы могут стимулировать диффузию анионных вакансий к растущим частицам [11, 14]. В процессе фотолиза граница раздела контактов PbN₆(Аб)-CdTe покрывается слоем фотолитического свинца и при больших степенях превращения фотолиз в этих системах будет в значительной степени определяться фотоэлектрическими процессами на границе $PbN_6(Aб)-Pb(продукт фотолиза)-CdTe.$

СПИСОК ЛИТЕРАТУРЫ

- 1. Robbilard J.J. // J. Photog. Science. 1971. V. 19. P. 25
- 2. Levy B., Lindsey M. // Phot. Sci. and Eng. 1973. V. 17. № 2. P. 135 141.
- 3. Акимов И.А., Черкасов Ю.А., Черкашин М.И. Сенсибилизированный фотоэффект. М.: Наука, 1980, с. 384
- 4. Индутный И.З., Костышин М.Т., Касярум О.П., Минько В.И., Михайловская Е.В., Романенко П.Ф. Фотостимулированные взаимодействия в структу-

- рах металл полупроводник. Киев: Наукова думка, 1992, 240 с.
- 5. Суровой Э.П., Сирик С.М., Бугерко Л.Н. // Журнал физической химии. 2000. Т. 74. № 5. С. 927933.
- 6. Суровой Э.П., Сирик С.М., Захаров Ю.А., Бугерко Л.Н. // Журн. науч. и прикл. фотографии. 2002. Т. 47. № 5. С. 19 27.
- 7. Суровой Э.П., Бугерко Л.Н. // Химическая физика. 2002. Т. 21. № 7. С. 7478.
- 8. Суровой Э.П., Бугерко Л.Н. и др. // Материаловедение. 2002. № 9. С. 2733.
- 9. Суровой Э. П., Шурыгина Л. И., Бугерко Л. Н. // Химическая физика. 2003. Т. 22. № 6. С. 17-22.
- 10. Боуден Ф., Иоффе А. Быстрые реакции в твердых веществах. М.: Иностранная литература. 1962. 243 с.
- 11. Суровой Э.П., Бугерко Л.Н., Расматова С.В. // Журн. физ. химии. 2004. Т. 78. № 4. С. 1.
- 12. А.с. 1325332 СССР. МКИ G01N 21/55. Устройство для измерения спектров отражения в вакууме / А.И. Турова, Г.П. Адушев, Э.П. Суровой и др. Заявлено 10.11.1985; Опубл. 24.07.1987, Бюл. № 27. 5 с.: ил.
- 13. Суровой Э.П., Захаров Ю.А., Бугерко Л.Н. // Неорган. материалы. 1996. Т. 32. № 2. С. 162.
- 14. Суровой Э.П., Захаров Ю.А., Бугерко Л.Н. и др. // Журн. научн. и прикл. фотографии. 2001. Т. 46. № 3. С. 1.
- 15. Суровой Э.П., Бугерко Л.Н., Захаров Ю.А. и др. // Материаловедение. 2003. № 7. С. 18.
- 16. Кригер В.Г. Кинетика и механизмы реакций твёрдофазного разложения азидов тяжёлых металлов: Автореф. дис. ... докт. физ.-мат. наук. Кемерово: КемГУ, 2002. 39с.
- 17. Захаров Ю.А., Савельев Г.Г., Шечков Г.Т. // Изв. вузов. Химия и хим. технология. 1967. № 11. С. 1191.

ФОТОСТИМУЛИРОВАННЫЕ ПРЕВРАЩЕНИЯ В АЗИДЕ СЕРЕБРА

С.М. Сирик, Г.О. Еремеева

Было установлено, что при экспонировании азида серебра светом λ <250 нм выделяется газообразный азот и нитрид серебра, а при облучении светом λ =365 нм продуктами фотолиза являются газообразный азот и металлическое серебро. Изучены кинетические закономерности образования фотолитического серебра и азота при воздействии на $AgN_3(A_1)$ света λ =365 нм в интервале интенсивностей 3.77·10¹⁴ ... 4.15·10¹⁵ квант·см⁻¹·с⁻¹.

Ключевые слова: фотолиз, азид серебра.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Азид серебра марки A_1 синтезировали методом двухструйной кристаллизации (в 0.2 н раствор нитрата серебра по каплям приливали 0.2 н раствор азида натрия, скорость

сливания 2 капли в минуту, $\tau_{\text{синтеза}}$ =30 минут, T=293 K, pH=3). Навески азида серебра массой 125 мг помещали в чашечки диаметром 1 см, тщательно диспергировали в воде, сушили в темноте при комнатной температуре. Количество фотолитического серебра опре-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4-1 2011