ИМПУЛЬСНЫЕ АВТОМАТИЗИРОВАННЫЕ ИЗМЕРЕНИЯ СКОРОСТЕЙ УПРУГИХ ВОЛН В КРИСТАЛЛАХ СПИСОК ЛИТЕРАТУРЫ В.А. Караванский, И.Н. Сорокин, Н.Н. Мельни

- 1. Волькейштейн, Ф.Ф. Физико-химия поверхности полупроводников [Текст] / Ф.Ф. Волькейштйен. М.: Наука, 1973 399 с.
- Зимин С.П. Классификация электрических свойств пористого кремния [Текст] /С.П.Зимин // Физика и техника полупроводников. – 2000. -№3. С. 359-1363.
- Горячев Д.Н. Свободные люминесцирующие слои пористого кремния [Текст] / Д.Н. Горячев, Л.В. Беляков // Физика и техника полупроводников. – 2010. - №12. С. 1636 -1639.
- Гаврилов С.А. Изменение механизма формирования слоев пористого кремния при анодной поляризации [Текст] / С.А. Гаврилов,

- В.А. Караванский, И.Н. Сорокин, Н.Н. Мельник // Электрохимия. 2009. №9. С. 364-369.
- Буллах Б.М. Взаимосвязь морфологии пористого кремния с особенностями спектров комбинационного рассеяния света [Текст] / Б.М. Буллах, Н.Е.Корсунская // Физика и техника полупроводников. – 2002. №5. –С. 587-592.

Студентка 5 курса **Е.М. Назарова** – evgesha_nazarova@mail.ru. К.т.н., проф. **В.А. Юзова** – yuzovav@yandex.ru, тел.8 (391) 2-498 -203. Студент 5 курса **В.В. Гаврилов** – vovka_gavrilov@mail.ru ФГАОУ ВПО «Сибирский федеральный университет», каф. «Приборостроение и наноэлектроника».

УДК 534.2; 53.08

ИМПУЛЬСНЫЕ АВТОМАТИЗИРОВАННЫЕ ИЗМЕРЕНИЯ СКОРОСТЕЙ УПРУГИХ ВОЛН В КРИСТАЛЛАХ

П.П. Турчин, А.А. Парфенов, Н.А. Токарев, А.Е. Нестеров, А.Ю. Тарасова, К.С. Александров

На основе эхо-импульсного метода разработана автоматизированная экспериментальная установка для измерения скоростей упругих волн в кристаллах. Определены скорости акустических волн в пьезо-электрике $La_3Ga_5SiO_{14}$ и сегнетоэластиках KPb_2Br_5 и $RbPb_2Br_5$

Ключевые слова: эхо-импульсный метод, автоматизированные измерения, упругость, монокристаллы.

Введение

Прямые измерения скоростей объемных акустических волн (ОАВ) являются наиболее эффективным методом изучения упругих свойств монокристаллов и других твердых тел [1, 2]. Известны применения таких измерений для определения упругости горных пород [3], композиционных и керамических материалов [4] и др. Определение скоростей звука в материалах, подверженных внешним воздействиям, либо в меняющихся термодинамических условиях, дает информацию о нелинейных характеристиках твердых тел [5-8]. Наиболее полные представления об особенностях рассматриваемых измерений в однородных и анизотропных средах позволяют получить исследования распространения упругих волн в монокристаллах.

Для определения скоростей ОАВ разработаны различные динамические экспериментальные методы — резонансные, фазовые, интерферометрические [1,2,9] — каждый из которых имеет собственную точность и чувствительность. Но наибольшее распространение для исследований упругих свойств монокристаллов получил эхо-импульсный метод [1,10], точность которого при абсолютных измерениях составляет 10^{-4} , а при относительных 10^{-6} .

Особенности автоматизированных измерений первыми тремя методами описаны в [9]. Подходы и требования к цифровым измерениям импульсными методами изучены в [10]. Вместе с тем являются актуальными вопросы точности автоматизированных измерений, временной стабильности цифровых данных при процессорном управлении акустическими исследованиями, а также новые функциональные возможности детектирования и обработки сигнала, предоставляемые современной цифровой техникой.

В работе исследуются особенности автоматизированных ультразвуковых измерений скоростей упругих волн в монокристаллах эхо-импульсным методом, реализованным на основе цифрового осциллографа DPO 72004 с применением внешней стабилизации его тактовой частоты. Выполнено сопоставление значений скоростей OAB в исследованном ранее аналоговым методом тригональном пьезоэлектрике $La_3Ga_5SiO_{14}$ [6] и измеренными разработанным методом. Получены экс-

РАЗДЕЛ III. ИЗМЕРЕНИЯ В ЕСТЕСТВЕННЫХ НАУКАХ И ТЕХНИКЕ

периментальные значения скоростей OAB в тетрагональном $RbPb_2Br_5$ и моноклинном KPb_2Br_5 сегнетоэластиках.

Скорости упругих волн и материальные постоянные

Измерения скоростей акустических волн и определение материальных констант выполняется в образцах монокристаллов, ориентированных относительно кристаллофизических осей координат [7, 11]. Тем самым задается соответствие направлений распространения ОАВ с ориентацией тензоров материальных свойств. Связь между материальными постоянными пьезоэлектриков и скоростями звука устанавливается уравнениями Кристоффеля [5,7]

$$(\Gamma_{il}-\lambda\delta_{il})U_l=0$$
, (1) где $\Gamma_{il}=C^E_{ijkl}n_jn_k+rac{e_ie_l}{\varepsilon\,*}$, C^E_{ijkl} - тензор

модулей упругости, $e_i = e_{nik} n_i n_k$ и $e_l = e_{p\ln} n_p n_n$ - пьезоэлектрические векторы (равны нулю в центросимметричных средах), e_{nik} - пьезоэлектрические постоянные, $\varepsilon^* = \varepsilon^\eta_{rs} n_r n_s$ - свертка тензора диэлектрической проницаемости ε^η_{rs} , n_i - единичный вектор волновой нормали. Величины скоростей ОАВ υ и векторы их поляризаций в анизотропных средах отвечают собственным значениям $\lambda = \rho \upsilon^2$ и собственным векторам U_l тензора Кристоффеля Γ_{il} и находятся путем решения системы уравнений (1).

Экспериментальные значения скоростей упругих волн позволяют найти значения материальных постоянных (обратная задача кристаллоакустики) в соответствие с уравнениями (1), записанными для различных n_i [3,12].

Автоматизированный эхоимпульсный метод

В данной работе путем модификации стандартной аналоговой измерительной схемы для исследования скоростей ОАВ импульсным методом [5] сконструирована автоматизированная установка (рисунок 1), которая обеспечивает фиксацию в памяти осциллографа последовательности отраженных в образце импульсов.

Короткий (30 нс) импульс с генератора 1 подается на пьезопреобразователь 3 и после многократного отражения в образце 4 серия отраженных импульсов регистрируется осциллографом 6. Вместо стробируемого усилителя [10, 13, 14] или ограничителя сигнала

и узкополосного усилителя [5] в схеме применен широкополосный ограничительусилитель сигнала 2 (рисунок 2), изготовленный по планарной технологии на основе малошумящего высокоскоростного операционного усилителя с низким коэффициентом искажений AD8099 [15]. Тем самым ограничивается амплитуда зондирующего импульса до входного уровня напряжения осциллографа 6 и повышается чувствительность метода при регистрации сигналов малой амплитуды.

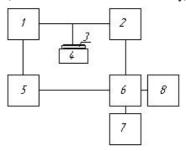


Рисунок 1 - Блок-схема автоматизированного метода. 1 — генератор импульсов Г5-66, 2 - ограничитель-усилитель сигнала, 3 — пьезопреобразователь (f_{pes.}=30МГц), 4 — образец, 5 - задающий генератор AFG 3252, 6 — осциллограф DPO 72004, 7 — рубидиевый стандарт частоты FS725, 8 — персональный компьютер

Рубидиевый стандарт частоты 7 обеспечивает температурную стабилизацию тактовой частоты осциллографа 6. Задающий генератор 5 запускает генератор 1, сихронизует развертку осциллографа 6 и позволяет управлять временем запуска зондирующих импульсов. Экспериментальное значение скорости ОАВ в реализованной методике находится по известной длине образца ℓ и измеренному времени распространения импульса в образце $\tau: \upsilon = \ell_{2\tau}$.

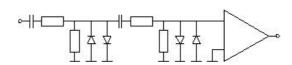


Рисунок 2 - Логическая схема ограничителяусилителя сигнала

Осциллограф 6 позволяет производить оцифровку сигнала с максимальной частотой дискретизации 50 ГГц по одному каналу. На частоте акустических измерений 30 МГц и при частоте дискретизации 12,5 ГГц на один период регистрируемого сигнала (рисунок 3) приходится более 400 точек, что превышает минимальный предел [10] при цифровой записи. Также существенно упрощаются возможности аппроксимации и цифровой фильтрации сигнала.

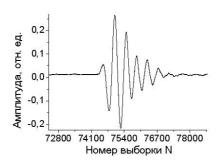


Рисунок 3 - Цифровое изображение эхоимпульса. Частота дискретизации 12,5 Гец, количество усреднений 1000

Измерение скоростей звука импульсным методом в монокристаллах, где затухание звука, как правило, невелико, приводит к регистрации достаточно большой (30-50 и более) серии отраженных импульсов. Тем не менее, существующие нескоррелированные помехи приводят к дополнительным погрешностям, которые в [5] устраняются применением узкополосного усилителя на частоте измерений. В нашем случае использована функция «усреднение» осциллографа 6, которая позволяет получать среднее значение двух последовательных сигналов. Применение рубидиевого стандарта частоты исключает временные флуктуации регистрируемых импульсов.

Поддержка стандарта GPIB осциллографом 6 делает возможным процесс управления измерениями и обработки данных с персонального компьютера 8. Для ускорения и упрощения измерения τ в среде LabView разработан графический редактор (рисунок 4). Он позволяет отобразить с выбранным разрешением по времени любые два (левое и правое окна вверху рисунок 4) из серии отраженных импульсов (нижнее окно рисунок 4) и определить значение τ путем совмещения курсоров 1 и 2 с подобными фрагментами соседних импульсов, либо среднее значение τ для произвольного числа эквидистантных импульсов.

Тем самым становится возможным определение задержки сигнала в образце (временного интервала между импульсами) путем обработки цифровых данных в графическом редакторе при удаленном доступе.

Экспериментальные исследования скоростей звука

Для измерений скоростей ОАВ использовались образцы монокристаллов в виде прямоугольных параллелепипедов с линейными размерами около 1-2 см. Плоскопараллельность граней образцов была не хуже ±3мк. Точность кристаллографической ориентиров-

ки составляла ± 3 '. Для проведения эксперимента были взяты исследованные нами ранее [6] образцы монокристаллов La $_3$ Ga $_5$ SiO $_{14}$ (точечная симметрия 32) и монокристаллы сегнетоэластиков RbPb $_2$ Br $_5$ (4/mmm) и KPb $_2$ Br $_5$ (2/m) [16], выращенные из стехиометрических составов методом Бриджмена-Стокбаргера. Последние два монокристалла являются предельными случаями твердых растворов K_x Rb $_{1-x}$ Pb $_2$ Br $_5$ перспективных для лазерной генерации в среднем ИК-диапазоне и относятся к семейству APb $_2$ X $_5$ (A=K, Rb; X=Cl,Br) [12, 16]. Все измерения выполнены при комнатной температуре.

Сравнительные результаты измеренных значений скоростей ОАВ в монокристалле $La_3Ga_5SiO_{14}$ аналоговым [5] и разработанным цифровым методом приведены в таблице 1. Значения скоростей ОАВ для всех кристаллофизических направлений и типов поляризаций исследованных волн совпадают в пределах экспериментальной погрешности для обоих методов. Погрешность определения скоростей не превышает 1 м/с в [6] и 2 м/с в настоящей работе. Этот результат демонстрирует эквивалентность примененных для измерений методов.

Полученным автоматизированным экспериментальным методом определены значения скоростей ОАВ в базовых срезах сегнетоэластиков KPb_2Br_5 и $RbPb_2Br_5$ (таблица 2). Значения скоростей продольных ОАВ лежат в пределах $1800 \div 2400$ м/с и $1200 \div 1700$ м/с сдвиговых ОАВ в $RbPb_2Br_5$ и $2200 \div 2600$ м/с и $1300 \div 1600$ м/с в KPb_2Br_5 , соответственно. Можно утверждать, что упругость кристаллов состава APb_2X_5 (A=K, Rb; X=CI,Br) в среднем растет при наличии ионов в соединении в последовательности $Rb \rightarrow K \rightarrow CI$. Но эта зависимость не является однозначной для мод SF в направлениях [100] и [010].

Заключение

Разработанный импульсный автоматизированный метод измерения скоростей упругих волн в монокристаллах (рисунок 1) осуществляет все функциональные возможности использованной ранее [5] аналоговой схемы измерений. Таблица 1 демонстрирует эквивалентность (в пределах погрешности метода) данных по скоростям звука, полученных аналоговым [5] и разработанным методами. Результаты не зависят от типа поляризации и направления распространения ОАВ в монокристаллах. Точность проводимых измерений автоматизированным методом достигается внешней стабилизацией тактовой частоты осциллографа.

Использование в экспериментальной схеме цифровых возможностей осциллогра-

П.П. ТУРЧИН, А.А. ПАРФЕНОВ, Н.А. ТОКАРЕВ, А.Е. НЕСТЕРОВ, А.Ю. ТАРАСОВА, К.С. АЛЕКСАНДРОВ

РАЗДЕЛ III. ИЗМЕРЕНИЯ В ЕСТЕСТВЕННЫХ НАУКАХ И ТЕХНИКЕ

фа DPO 72004 позволяет без привлечения дополнительных схем автоматизации [10, 17] выполнять единовременное запоминание всей серии отраженных в образце акустических импульсов. Дискретизация сигнала в использованной схеме в режиме real time ос-

циллографа варьируется от минимальной до более 1600 точек на период при частоте измерений 30 МГц. Последующая обработка сигнала становится возможной «удаленным» оператором с привлечением необходимых пакетов математических программ.

Рисунок 4 - Вид окна графического редактора для определения времени задержки между двумя эхо-импульсами (левое и правое окна вверху), отмеченными курсорами 1 и 2 в серии отраженных импульсов (нижнее окно). Пояснения в тексте

Таблица 1 - Скорости ОАВ (м/с) в монокристалле $La_3Ga_5SiO_{14}$

\vec{n}	$ec{U}$	υ, [6]	$oldsymbol{\mathcal{U}}$, эксперимент
[100]	L	5748,7	5749,4
	SF	3311,5	3310,0
	SS	2379,6	2380,7
[010]	QL	5755,3	5754,2
	QSF	3009,9	3010,2
	SS	2738,2	2738,4
[001]	L	6746,7	6749,7
	S	3052,2	3052,7
$\left[0\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$	QL	6312,8	6313,0
	QSF	3332	3331,4
	SS	2431,3	2431,9
$\left[0 - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right]$	QL	5963,3	5963,3
	SF	3282,6	3280,9
	QSS	3231,2	3230,3

Таблица 2 - Скорости ОАВ в монокристаллах состава APb_2X_5 (A=K, Rb; X=Cl,Br)

\vec{n}	_	υ, м/c			
	$ec{U}$	RbPb ₂ Br ₅	KPb ₂ Br ₅	KPb ₂ Cl ₅ , [12]	
[100]	L	2398,0	2558,8	3010,3	
	SS	1231,0	1331,5	1532,8	
	SF	1625,7	1516,7	1730,6	
[010]	L	2398,4	2238,5	2717,8	
	SS	1231,0	1335,7	1521,0	
	SF	1626,2	1516,1	1731,3	
[001]	L	1828,9	2428,7	2766,2	
	SS	1230,2	1331,3	1520,8	
	SF	1230,2	1337,7	1523,6	

Выполненные измерения скоростей упругих волн монокристаллов семейства APb2X5 (A=K, Rb; X=Cl,Br) демонстрируют корреляцию акустических свойств и позволяют оце-

ИМПУЛЬСНЫЕ АВТОМАТИЗИРОВАННЫЕ ИЗМЕРЕНИЯ СКОРОСТЕЙ УПРУГИХ ВОЛН В КРИСТАЛЛАХ

нить влияние ионов A и X на упругость этих монокристаллов при комнатной температуре.

Работа выполнена в рамках Междисциплинарного проекта СО РАН №34 и при поддержке гранта Президента РФ «Ведущие научные школы» НШ-4645.2010.2.

СПИСОК ЛИТЕРАТУРЫ

- Физическая акустика, т.1, ч.А. Методы и приборы ультразвуковых исследований / под ред. У.Мэзона. – М.: Мир, 1966. – 592 с.
- 2. Труэлл Р. Ультразвуковые методы в физике твердого тела / Р.Труэлл, Ч.Эльбаум, Б.Чик. М.: Мир, 1972. 307 с.
- 3. Александров К.С. Упругие свойства минералов и горных пород / К.С.Александров, Г.Т.Продайвода. Новосибирск: Изд-во СО РАН, 2000. 354 с.
- 4. Беломестных В.Н. Упругие и акустические свойства ионных, керамических диэлектриков и высокотемпературных сверхпроводников / В.Н.Беломестных [и др.]. Томск: STT, 2001. 226 с.
- Зайцева М.П. Нелинейные электромеханические свойства ацентричных кристаллов / М.П.Зайцева [и др.]. Новосибирск: Наука, 1986. 177 с.
 Сорокин Б.П. Упругая нелинейность и
- Сорокин Б.П. Упругая нелинейность и особенности распространения объемных акустических волн в условиях действия однородных механических напряжений в монокристалле La₃Ga₅SiO₁₄ / Б.П.Сорокин, П.П.Турчин, Д.А. Глушков // ФТТ. 1994. Т.36. В.10. С. 2907-2916.
- 7. Александров К.С. Эффективные пьезоэлектрические кристаллы для акустоэлектроники, пьезотехники и сенсоров. Т.1 / К.С.Александров, Б.П.Сорокин, С.И.Бурков. Новосибирск: Изд-во СО РАН, 2007. 501 с.
- 8. Александров К.С. Эффективные пьезоэлектрические кристаллы для акустоэлектроники, пьезотехники и сенсоров. Т.2 / К.С.Александров, Б.П.Сорокин, С.И.Бурков. Новосибирск: Изд-во СО РАН, 2007. 428 с.
- 9. Турчин П.П. Автоматизация акустических методов исследований твердых тел / П.П.Турчин [и др.] // Вестник КрасГУ, сер. физ. мат. науки. 2006. №1. С. 34-41.

- 10. Коробов А.И. Автоматизированная установка для измерения фазы, скорости и амплитуды ультразвуковых волн в твердых телах / А.И.Коробов [и др.] // Измерительная техника. 1995. №9. С. 60-62.
- 11. Сиротин Ю.И. Основы кристаллофизики / Ю.И.Сиротин, М.П. Шаскольская. М.: Наука, 1979. 640 с.
- 12. Александров К.С. Колебательный спектр и упругие свойства кристалла KPb_2Cl_5 / К.С.Александров [и др.] // ФТТ. 2005. Т.47. В.3. С. 512-518.
- Иваса И. Автоматическая ультразвуковая измерительная система с фазочувствительным детектированием / И.Иваса, Х.Коидзуми, Т.Судзуки // Приборы для научных исследований. 1988. №2. С. 139-146
- 14. Тулуз Ж. Автоматическая система для измерения ослабления ультразвука и относительных изменений его скорости / Ж.Тулуз, К.Лоней // Приборы для научных исследований. 1988. №3. С. 98-102.
- 15. Analog device [Электронный ресурс] Режим доступа: http://www.analog.com. Загл. с экрана
- 16. Исаенко Л.И. Исследование влияния постепенного замещения $K \leftrightarrow Rb$ на структуру и фазовый переход в твердых растворах $K_xRb_{1-x}Pb_2Br_5$ / Л.И.Исаенко [и др.] // ФТТ. 2009. Т.51. В.3. С. 554-557.
- Turchin P.P. The frequency dependences of velocities and attenuations of elastic waves in heterogeneity mediums examination / P.P.Turchin [and others] // Proc. of "2007 IEEE Int. Ultrasonics Symposium", USA, New York, NY. 2007. P. 1637-1640.

Доцент П.П. Турчин тел. 8-391-232-50-94, pavelpturchin@lan.krasu.ru; академик РАН К.С. Александров- каф. физики конденсированного состояния вещества Сибирского федерального университета, лаб. кристаллофизики института физики им. Л.В.Киренского СО РАН, г. Красноярск. Зав. лабораториями А.А. Парфенов; ст.преподаватель Н.А. Токарев ; аспирант А.Е. Нестеров - каф. физики конденсированного состояния вещества Сибирского федерального университета, г.Красноярск. М.н.с. А.Ю. Тарасова - лаб.роста кристаллов института геологии и минералогии им. В.С.Соболева СО РАН, г.Новосибирск.