ИСПОЛЬЗОВАНИЕ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ В КОМПЛЕКСНЫХ СИСТЕМАХ ЭНЕРГООБЕСПЕЧЕНИЯ СЕЛЬСКИХ ЗДАНИЙ

О.В. Шеповалова

В статье рассмотрены вопросы необходимости использования возобновляемых источников энергии в сельском хозяйстве, при энергообеспечении сельских зданий. Отражены особенности создания систем энергообеспечения, использующих ВИЭ, для сельских зданий, крестьянских (фермерских) хозяйств. Представлены таблицы роста производства энергии и оценки потенциала, прогноз снижения стоимости систем в нашей стране при условии их массового внедрения.

Ключевые слова: комплексные системы энергообеспечения, сельские здания, возобновляемые источники энергии, прогноз, потенциал, стоимость.

Стратегической целью развития энергетической базы сельского хозяйства является создание комфортных социально-бытовых условий жизни на селе.

Энергетика сельского хозяйства имеет ряд специфических особенностей: рассредоточенность сельских потребителей; малая единичная мощность; большая протяженность электрических, тепловых, газовых сетей; наличие больших территорий (малонаселенных), где ведется сельскохозяйственное производство, но не имеющих централизованного энергоснабжения. Эти особенности накладывают дополнительные требования к системам энергообеспечения.

К основным задачам энергообеспечения и энергосбережения в сельском хозяйстве относятся:

- обеспечение возрастающих потребностей сельского хозяйства в энергоресурсах;
- обеспечение экономичного, надежного и устойчивого энергоснабжения сельских объектов при снижении аварийных отключений и перерывов в энергоснабжении села в 2-3 раза, повышение уровня безопасной эксплуатации энергетического оборудования (до50%);
- рационализацию структуры топливноэнергетического баланса с широким использованием возобновляемых, биомассы и местных энергоресурсов, доля которых в энергетике села должна к 2015г. составить 10%, а к 2020г. – 15-20%;
- снижение зависимости от централизованного энергоснабжения ряда сельских потребителей посредством самообеспечения энергией на базе собственных и нетрадицион-

ных энергоресурсов с выработкой энергии на местах в соответствии с ресурсами регионов [1].

В решении каждой из этих задач создание и широкое внедрение систем энергообеспечения, использующих возобновляемые источники энергии (ВИЭ), должно сыграть существенную роль.

Задачи, решаемые за счет внедрения систем энергообеспечения, использующих ВИЭ:

Получение дополнительных источников электрической и тепловой энергии, повышение энергообеспеченности и уровня жизни сельского населения.

Сокращение использования закупаемых традиционных энергоресурсов и снижение зависимости от централизованного энергоснабжения (к 2020г. на 20%).

Электро-, тепло- и газификация удаленных, рассредоточенных сельских потребителей, не имеющих доступа к централизованным сетям.

Развитие удаленных сельских регионов.

В таблице 1 приведены потенциальные потребители ВИЭ в сельской местности России [2].

В сравнении с традиционными способами энергообеспечения при использовании ВИЭ мы устраняем в социальной сфере села следующее:

- затраты на прокладку электросетей 500 тыс. руб./км, газовых сетей 210 тыс. руб./км;
- потери в сетях от 20% до 30% электросети, до 60% теплосети;
- износ и необходимость восстановления оборудования сетей до 80%;
- рост платы за подключение (более 50тыс.руб/кВт);

- сбои, в энергоснабжении, ненадежность, низкое качество энергоснабжения, что приводит к потерям и невосстановимым убыткам (ущерб от потерь сельскохозяйст-

венной продукции в 25-30, а иногда в 100-150 раз превышает стоимость недоотпущенной энергии);

Таблица 1 – Потенциальные потребители возобновляемых источников энергии в сельской местности Poccuu

Huanau	Централизованная зона	Децентрализованная зона			
Числен- ность жи- телей в населённом пункте, чел.	Сельские жители, живущие в зонах неустойчивого энер- госнабжения	Сельские жители (оценка 1995 г.)	Вахтовые посёл- ки (оценка 1994 г.)	Охотники, рыба- ки, кочевники, геологи, строи- тели ЛЭП и тру- бопроводов	Садово- огород- ные уча- стки и товари- щества
1	2	3	4	5	6
до 50	<u>4000</u> 120000	<u>2940</u> 67800	<u>2560</u> 65800	<u>8000</u> 52000	400000 2000000
от 51–500	<u>4800</u> 1200000	<u>10387</u> 2294805	<u>520</u> 131600	<u>160</u> 8000	8000 2000000
501–3000	<u>3600</u> 3600000	<u>5615</u> 5868160	<u>91</u> 65800	-	<u>1000</u> 1000000
3001–10	<u>216</u>	388	<u>43</u>		
тыс.	1080000	2082839	131600	_	
ВСЕГО	6000000	10313600 394800 60000 50000			
ИТОГО	6000000	15768400			

Примечание

Над чертой – количество населённых пунктов,

под чертой – общее количество жителей в такого рода пунктах.

- затраты на доставку ГСМ; трудности (невозможность) прокладки сетей и доставки ΓCM;
- рост стоимости энергоснабжения за счет традиционных ресурсов (в среднем 15% в год) и их исчерпаемость;
- экологические проблемы: загрязнение окружающей среды, выбросы СО2 и пр., а значит ухудшение условий жизни сельского населения, снижение продуктивности и качества сельскохозяйственной продукции, рост заболеваемости и пр.

Необходимость систем, использующих ВИЭ, для энергообеспечения сельской инфраструктуры так же основана на следующих потребностях и проблемах:

Обеспечение устойчивого, соответствующего принятым в аналогичных климатических условиях тепло- и электроснабжения населения в зонах децентрализованного энергоснабжения, в первую очередь в районах Крайнего Севера и приравненным к ним территорий. В районы автономного энергоснабжения Крайнего Севера, Дальнего Востока и Сибири ежегодно завозится 6-8 млн. тонн горюче-смазочных материалов (дизельное топливо, бензин, мазут, масла) и 20-25 млн. тонн угля. В связи с увеличением транспортных расходов стоимость топлива в

указанных районах удваивается и утраивается по сравнению с ценами производителей и уже достигла или превышает 300 долл./т у.т. На топливо и его завоз тратится более половины бюджета территорий. Нехватка топлива зачастую ставит под угрозу жизнь людей, и государство вынуждено решать вопрос завоза топлива с помощью МЧС России. Речь идет о жизнеобеспечении 10-12 млн. человек. Тогда как во всех этих регионах имеются возобновляемые источники энергии, способные обеспечить на 70-90% их энергетические потребности.

Обеспечение гарантированного минимума энергоснабжения населения в зонах неустойчивого централизованного энергоснабжения (главным образом в дефицитных энергосистемах), предотвращение ущербов от аварийных и ограничительных отключений. Частые отключения потребителей с ФО-РЭМ (федеральный оптовый рынок энергии и мощности), производящиеся якобы из-за неуплаты за электроэнергию и/или топливо, плюс ограничение в потреблении "в связи с необходимостью экономии энергетических ресурсов" (формулировка РАО ЕЭС России), плюс перерывы в энергоснабжении из-за аварийных отключений дезорганизуют жизнь городов и регионов, наносят ущерб, оцени-

ПОЛЗУНОВСКИЙ ВЕСТНИК №2/2 2011

ИСПОЛЬЗОВАНИЕ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ В КОМПЛЕКСНЫХ СИСТЕМАХ ЭНЕРГООБЕСПЕЧЕНИЯ СЕЛЬСКИХ ЗДАНИЙ

ваемый в миллиарды долларов в год. По примерным оценкам среднемноголетних потерь в сельском хозяйстве ущерб от недоотпуска электроэнергии в 25-30, а иногда в 100-150 раз превышает стоимость недопоставленной энергии. Создание систем энергообеспечения на базе возобновляемых источников энергии и местных видов топлива в этих районах позволит в значительной мере повысить надежность энергоснабжения, избежать потерь от недоотпуска электроэнергии, а также снизить потери в сетях. Особенно актуально создание генерирующих мощностей на "концах" местных линий электропередач напряжением 6-10 кВ, имеющих большую протяженность. Перерывы в электроснабжении потребителей, подключенных к таким линиям, длятся многие часы, что усугубляет ущерб, нанесенный потребителям и не компенсируемый энергоснабжающими организациями. Речь идет, по крайней мере, о жизнеобеспечении 10-15 млн. человек.

Снижение превышения спроса на энергию по сравнению с ростом ее генерации (в ряде регионов уже имеет место дефицит энергии).

Снижение вредных выбросов от энергетических установок. Имеющимися средствами возобновляемой энергетики (солнечные приставки к существующим котельным, солнечные системы горячего водоснабжения, тепловые насосы и др.) можно в два—три года существенно снизить отрицательное воздействие энергетики на окружающую среду.

В сельской местности источниками загрязнения окружающей среды стали птицефабрики и крупные животноводческие фермы, особенно свиноводческие. Подавляющее большинство очистных сооружений не соответствуют современным требованиям санитарии и экологии либо вовсе отсутствуют. В результате на близлежащую территорию (почва, вода, воздух) сбрасываются неочищенные

навозные стоки. Сооружение на таких комплексах биоэнергетических и биогазовых установок, попутно с решением экологической проблемы, позволяет производить биогаз (например, 32 куб. м на 100 свиней в сутки) и высококачественные удобрения (1,6 кг на 1 голову в сутки). И в этих случаях речь идет о жизнеобеспечении 10–15 млн. человек [2].

Неисчерпаемость и экологическая чистота возобновляемых источников энергии главные причины бурного развития энергетики ВИЭ в мире и оптимистических прогнозов их развития в ближайшие годы.

Пять основных причин, по которым развитые страны занимаются использованием ВИЭ:

- экологические проблемы;
- обеспечение энергетической безопасности;
 - завоевание мировых рынков;
- сохранение собственных энергоресурсов;
- увеличение потребления топлива для неэнергетического использования.

Помимо этих «глобальных» причин, не менее важно использование энергетики ВИЭ на местном уровне:

- приближение энергетики к потребителю;
- развитие отдаленных районов;
- снижение экологической напряженности.

В последние годы отмечается смена приоритетов в использовании различных видов ВИЭ. Первое место принадлежит теперь солнечной энергетике, второе — биоэнергетике, которая несколько оттеснила ветроэнергетику. Последнее объясняется тем, что многие ветроэнергетические проекты не были доведены до промышленной стадии. Получение энергии ветра оказалось не столь легким и дешевым процессом, как думали энтузиасты внедрения ВИЭ еще десятилетие назад [3]. В таблицах 2 и 3 приведены показатели роста ВИЭ в мире и оценка потенциала.

	_		
Lahriiia 2 — Docm	TRALIZACACMAS SUANS	HILL O MILING 22 CUDI	п использовании ВИЭ
i aujiuua 2 – i uuiii	IIDUUSOUUUIIIOA JII U DO	iuu o wunt sa caci	II UCIIOJIBSOBANUU DVIO

виЭ	2004г.	2030г.	Примерный рост (разы)
1	2	3	4
Производство электроэнергии, ТВт⋅ч	3179	7775	>2
Гидроэнергия	2810	4903	<2
Биомасса	227	983	>4
Ветроэнергетика	82	1440	18
Солнечная энергетика	4	238	60
Геотермальная энергетика	56	185	>3
Приливная и волновая энергетика	<1	25	46
Производство тепловой энергии, Мт н.э.	25	236	>10

ШЕПОВАЛОВА О.В.

Продолжение таблицы 2

1	2	3	4
Биотопливо	15	147	10
Геотермальное тепло	4,4	25	6
Солнечные тепловые установки	6,6	64	10

Таблица 3 – Оценка потенциала возобновляемых источников энергии России

Ресурсы	Валовый потенциал, млн. т у.т./год	Технический потен- циал, млн. т у.т./год		Экономический по- тенциал, млн. т у.т./год	
		2010	2020	2010	2020
Солнечная энергия	2 205400	9695	29900	62,5	180
Энергия ветра	44326	2216	3324	11	18
Малая гидроэнергетика	402	126	160	70	91
Энергия биомассы	467	129	170	69	88
Геотермальная энергия	29200	11869	1300	114	125
Низкопотенциальное тепло (тепловые насосы)	563	194	220	53	70
ИТОГО по ВИЭ	2 251158	24229	35074	320	572

В развитие ВИЭ в мире вкладываются очень большие средства, например в 2008 г. общие инвестиции составили около 120 млрд. долл. В процентном отношении эти средства распределяются следующим образом: 60% средств были направлены на строительство станций на базе ВИЭ; 12% - на развитие большой гидроэнергетики; 12% - на строительство заводов по производству солнечных элементов и биотоплив; 16% - на научные исследования и проекты [3].

Опыт внедрения и использования возобновляемых источников энергии в мировой практике выявил основные движущие силы, которые позволили эффективно развивать это направление:

- преимущества ВИЭ;
- выравнивание стоимости производимой энергии от традиционных источников и от ВИЭ, в том числе в связи с ужесточением экологических требований к энергии традиционных электрических станций;
- непрерывное снижение стоимости оборудования возобновляемой энергетики за счет совершенствования технологической базы;
- системный подход в вопросах использования возобновляемых источников энергии;
- энергосбережение, непрерывное снижение энергопотерь;

 наличие четкой, аргументированной и полноценной нормативно-правовой базы в области ВИЭ и энергосбережения.

Последний пункт важен как в связи с недостатками возобновляемых источников энергии (низкая плотность, стохастичность поступления, неравномерность территориального размещения), так и с преимуществами, трудно поддающимися экономической оценке (экологическая чистота, непрерывная возобновляемость, доступность). Недостатки и преимущества ВИЭ должны учитываться при формировании государственной политики в сфере их использования.

Указанные движущие силы характерны и для России, однако для их действия необходимым условием является массовое внедрение ВИЭ в энергоснабжение, в частности в энергообеспечение сельских потребителей. Сельское хозяйство обладает наибольшим потенциалом для раскрытия преимуществ ВИЭ при одновременном решении наиболее острых проблем сельского энергообеспечения.

Самая важная задача для широкого внедрения ВИЭ в России и их эффективного функционирования — это комплексный подход, создание комплексных систем энергообеспечения. Необходимо продумывать, закладывать, оптимизировать изначально все аспекты, особенности и взаимосвязи, т.к. в

ИСПОЛЬЗОВАНИЕ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ В КОМПЛЕКСНЫХ СИСТЕМАХ ЭНЕРГООБЕСПЕЧЕНИЯ СЕЛЬСКИХ ЗДАНИЙ

отличие от сетевого энергоснабжения, от которого энергия будет у потребителя не зависимо от потерь, в случае использования ВИЭ при неправильной организации, из-за потерь энергии будет не достаточно или ее не будет вообще [4].

Состояние использования возобновляемых источников энергии в России: единичные, индивидуальные установки, отсутствие типовых установок и систем. Производство в нашей стране на уровне элементов и конструкций (солнечные коллектора, солнечные батареи и т.п.), установки – в начальной стадии. Производство, массовое, систем отсутствует, есть индивидуальные, частные проекты. Т.к. производства, даже установок практически нет, их соединение не придумано.

Иностранные предложения на нашем рынке сводятся к установкам или отдельным конструкциям (например, солнечные коллектора). В иностранных устройствах хорошо продуманы соединительные элементы, общие схемы установок, они эстетичнее. Остальная часть процесса создания систем требует серьезной адаптации к нашим условиям. За рубежом большинством системных вопросов занимаются по отдельным взаимосвязанным программам, поэтому при создании систем с ВЭИ они присутствуют автоматически. Проводимых фирмами курсов по обучению монтажу своих установок не достаточно, чтобы «человек с улицы» или монтажник традиционного отопления, электрик, сделал эффективную систему с ВИЭ.

Практика показала, что механическое использование зарубежных технологий и техники, без учета конкретных условий, оканчивается неудачей. Лишь после многих проб и ошибок удавалось получить результат на уже реализованном объекте.

Основные направления работ и научных исследований для эффективного использования ВИЭ:

- 1) создание комплексных систем; оборудования и установок, согласующихся со всеми остальными составляющими процесса производства, подачи и потребления внутри сельского объекта;
 - 2) снижение потерь;
- 3) интеграция: одновременное, согласованное, постоянное управление всеми составляющими;
- 4) меры по снижению стоимости единицы установленной мощности;
- 5) мониторинг, создание полного кадастра потенциала возобновляемых источников на с.-

х. территории страны по всем требуемым для разработки систем характеристикам.

Для сельских регионов России и, соответственно, Программы социального развития села необходимы как автономные, так и смешанные системы энергообеспечения, использующие ВИЭ. Автономные системы работают без подключения к централизованным сетям, смешанные частично используют энергоснабжение от централизованных сетей. В смешанных системах ВИЭ могут быть основным или резервным источником. В общем случае в таких системах ВИЭ должен использоваться весь возможный срок эффективной работы. Система должна быть построена таким образом, чтобы в первую очередь энергия подавалась от возобновляемых источников и только при отсутствии такой возможности (или недостаточной мощности) от других источников.

Из всех видов ВИЭ самый быстрый рост (до 50% в год) характерен для развития фотоэнергетики несмотря на относительно высокую стоимость. При существующих темпах развития и внедрении новых технологий, стоимость электрических гелиосистем 2020г. снизится в 2-3 раза. Солнце как ресурс есть повсеместно. Солнечные батареи обладают самым большим потенциалом по быстрому улучшению экономических и технических характеристик и увеличению объемов выпуска, наибольшей дробностью установленной мощности и являются наиболее жестким вариантом по стоимости при определении показателей и индикаторов внедрения ВИЭ. Поэтому при проведении общих расчетов целесообразно за базовый вариант выбирать системы с солнечным электроснабжением. Для сельских объектов выбранная установленная мошность таких 0,2÷10кВт. Они могут обеспечить 1-30 домов в зависимости от региона и потребляемой мошности.

В таблице 4 приведен диапазон значений удельной стоимости систем энергообеспечения с ВИЭ в 2011 и 2020г. исходя из условия начала массового внедрения систем.

Таблица 4 — Удельная стоимость 1кВт установленной мощности систем энергообеспечения с ВИЭ, \$/кВт

виэ	2011г.	2020г.
Солнечная фо- тоэнергетика	5000-9000	2500-3500

ШЕПОВАЛОВА О.В.

Продолжение таблицы 4

1	2	3
Солнечная теп- лоэнергетика	2000-3140	1700-2000
Биомасса	1000-2500	950-2100
Малая гидро- энергетика	400-1450	300-1140
Ветроэнергетика	1350-3900	1200-3200
Геотермальная энергетика	1700-5700	1500-5000
Низкопотенци- альное тепло	4500-6680	3800-4800
Энергия моря Приливные Волновые Течения	1700-2500 1500-3000 2000-3000	1400-2100 1300-2600 1600-2600

На рисунке 1 приведен прогноз снижения стоимости 1 Вт удельной мощности систем энергообеспечения сельских зданий, использующих различные виды ВИЭ параллельно с ростом количества внедряемых установок. Вариант роста также представлен на рисунке 1. Для фотоэлектрических систем (базовый вариант) определена линия тренда, в остальных случаях берется наиболее жесткий ценовой вариант.

Использование ВИЭ в системах энергообеспечения сельских зданий является актуальной, перспективной и реализуемой задачей. Сельское хозяйство обладает наибольшим потенциалом для раскрытия преимуществ ВИЭ при одновременном решении наиболее острых проблем сельского энергоснабжения.

Внедрение комплексных энергоэффективных систем автономного и смешанного энергообеспечения сельских зданий, использующих возобновляемые и местные энергоресурсы, позволит: повысить уровень и качество электро—, тепло— и водоснабжения сельских населенных пунктов, зданий и сооружений; снизить потери ресурсов, обеспечить энергосбережение; повысить энергоэффективность; повысить уровень энергообеспеченности удаленных, рассредоточен-

ных сельских объектов малой и средней мощности.

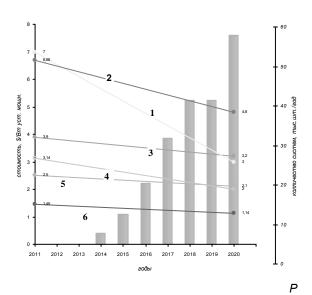


Рисунок 1 - Прогноз снижения стоимости 1Вт удельной мощности систем энергообеспечения, использующих различные виды ВИЭ и рост количества систем к 2020г

1— солнечная энергия, электричество; 2— низкопотенциальное тепло; 3— энергия ветра; 4 солнечная энергия, тепло; 5— биомасса; 6— гидроресурсы

СПИСОК ЛИТЕРАТУРЫ

- 1. Лачуга, Ю.Ф. Энергетическая стратегия сельского хозяйства России на период до 2020г.// Ю.Ф. Лачуга, Д.С. Стребков, А.В. Тихомиров и др. М.: ГНУ ВИЭСХ, 2009. 64 с.
- 2. Безруких, П.П., Возобновляемая энергетика: стратегия, ресурсы, технологии/ П.П. Безруких, Д.С. Стребков– М.: ГНУ ВИЭСХ, 2005. 264с.
- 3. Елистратов, В.В. Опыт внедрения ВИЭ в мире и России/В.В. Елистратов- Академия энергетики. 2009. №2(28). С. 56-66
- 4. Шеповалова, О.В. Организация и построение систем энергообеспечения сельских зданий// Энергообеспечение и энергосбережение в сельском хозяйстве. Труды 7-ой Международной научно-технической конференции (18–19 мая 2010 года, Москва)/ О.В. Шеповалова- Часть 1. М.: ГНУ ВИЭСХ, 2010. С.344-349

Шеповалова О.В., к.т.н., зав. лабораторией энергообеспечения сельских зданий, крестьянских и фермерских хозяйств, ГНУ ВИЭСХ Россельхозакадемии, E-mail:shepovalovaolga@mail.ru.