МЕТОДИКА ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНЫХ ПОЛЕЙ В ПОЧВЕ И ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ОГРАЖДЕНИЯ

А.Г. Иванов, А.К. Оразбекова

В статье рассматриваются вопросы, связанные с методикой исследования как стационарных, так и динамических температурных полей при разогреве почвы. Также данный метод предлагается применять после смены терморезисторов типов ММТ-4 на ЭТРМ для измерения температуры ограждения. Приводятся результаты исследования стационарных полей и разогрева почвы в весеннее время.

Ключевые слова: температурное поле, температура ограждения, методика исследования, мостовая электрическая схема, термосопротивление, защищенный грунт, почва.

Для исследования температурных полей и снятия кривых разогрева почвы в защищенном грунте и измерения температуры поверхности ограждения можно использовать разработанный в АФИ [1, 2] полупроводниковый прибор, предназначенный для дистанционного измерения температуры различных тел.

На основе данной разработки нами был изготовлен переносной прибор (рисунок 1), который был применён для исследования тепловых режимов закрытого грунта. В качестве датчиков температуры были использованы закрепленные на концах термощупов полупроводниковые терморезисторы типа ММТ-4 сопротивлением 3,3 кОм (для исследования теплового режима почвы) и терморезистор типа ЭТРМ (для измерения темпе-

Рисунок 1- Переносной прибор для измерения температуры

Во время замеров термосопротивление подключается в плечо неравновесного моста по схеме (рисунок 2). Три остальных плеча представляют собой катушки, намотанные

манганиновым проводом, сопротивление которых не меняется при изменении температуры. В зависимости от температуры, в которую помещён термистор, мост может быть разбалансированным и тогда в его диагонали потечет ток, соответствующий определённому значению сопротивления чувствительного элемента и, следовательно, определённому значению температуры.

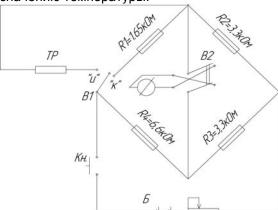


Рисунок - Электрическая схема моста для дистанционного измерения температуры

Показывающим прибором является микроамперметр типа М-24, 50 мкА, класс 1,5, включенный в диагональ моста через двухполюсный переключатель В2. Отсчет измеряемой температуры производился по градуировочным кривым зависимости температуры от тока в диагонали моста. Термосопротивление, предназначенное для измерения температуры, тарировалось с помощью высокочувствительного ртутного термометра типа 4 со шкалой от -10 до +50 °C, ценой деления 0,2 °C (ГОСТ 2045-43 ТЛ-7А). На рисунок 3 приведена такая градуировочная кривая примененного в эксперименте одного из термосопротивлений.

МЕТОДИКА ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНЫХ ПОЛЕЙ В ПОЧВЕ И ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ОГРАЖДЕНИЯ

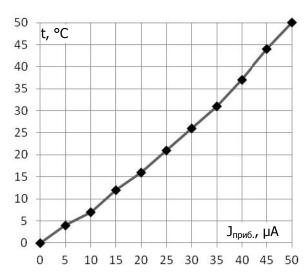


Рисунок 3 - Градуировочная кривая термистора

Источником питания моста служит батарея карманного фонаря типа EXPIRY 9910 на 4,5 В, расположенная в корпусе прибора.

Показания прибора будут правильными только при определенной величине напряжения. Поэтому перед каждым измерением производилась проверка и регулировка его. Проверка осуществлялась установкой рукоятки тумблера В1 (рисунок 2) в положение «К» (контроль), в данном случае вместо термосопротивления в плечо моста вводится постоянное контрольное сопротивление R₁, величина которого подбирается с таким расчетом, чтобы при выбранном для данного прибора напряжении стрелка микроамперметра отклонилась до последнего деления в конце шкалы.

Если во время контроля это условие не соблюдалось, то напряжение, подаваемое в схему, регулировалось при помощи потенциометра, включенного в цепь батареи.

Положение рукоятки тумблера, обозначенное буквой «И», соответствует измерению температуры. При этом термосопротивление оказывается подключенным в плечо моста и отклонение стрелки измерительного прибора указывает электрический ток в диагонали моста, соответствующий сопротивлению чувствительного элемента, а значит и температуре измеряемой среды.

Описанная измерительная схема электрического моста позволяет измерять температуру от -50 до $\pm 1.0^{\circ}$ С с точностью $\pm 1.0^{\circ}$ С.

Большое влияние на тепловой режим почвы оказывает солнечная радиация, которая учитывалась с помощью потока тепловой энергии, аккумулированной в почве за день от солнца, для чего необходимо знать ампли-

туду колебаний температуры поверхности почвы внутри теплицы. Форма кривой изменения температуры воздуха снаружи и внутри, а также температуры поверхности почвы обогреваемого и открытого грунта – идентичны. Расчет теплоты $q_{a\kappa}$. производился поформуле, взятой из научной работы [3]:

$$q_{a\kappa.} = 1.6A \cdot \sqrt{\frac{\lambda \cdot c \cdot \rho}{\tau}}$$
, BT/M² (1)

где λ - коэффициент теплопроводности почвы, $\mathrm{Bt/m}^{\, \cdot}\mathrm{C},$

c – удельная теплоемкость почвы, $B_{\mathsf{T}}\cdot\mathsf{чac}/\mathsf{kr}\cdot{}^{\mathsf{0}}\mathsf{C},$

 ρ - плотность почвы, кг/м³,

 τ = 24 часа – период колебаний,

2A – средняя дневная амплитуда колебаний температуры поверхности почвы под ограждением, $^{\circ}$ С.

Значения λ , A, c и ρ были взяты из справочника [4] для соответствующей климатической зоны.

При эксплуатации различных культивационных сооружений очень важно знать динамику разогрева их. Только при наличии данных о времени разогрева весенней теплицы в определенное время года позволит определить, а также и регулировать в зависимости от погодных условий сроки ввода ее в работу.

Также знание динамики разогрева почвы помогает при математическом моделировании процесса ее обогрева. В частности, температуру на глубине, например, при физическом моделировании можно правильно установить только тогда, когда имеются кривые распределения температуры по глубине при разогреве данного культивационного сооружения, полученные с помощью натурного эксперимента.

Расчет обогрева почвы обычно производится по средним, установившимся агроклиматическим и физическим условиям, действующим в теплице в ночное время самого тяжелого (холодного) периода эксплуатации ее. А такое состояние наступает, как только заканчивается разогрев. Имея кривые разогрева почвы в различных горизонтах, можно определить по ним, когда практически наступает стационарное тепловое состояние обогреваемого грунта в целом и по отдельным горизонтам, и с этого момента необходимые параметры теплицы должны быть приняты при расчете обогрева почвы.

В начале мая 2010 г. в одной из индивидуальных теплиц Новосибирского района Но-

ИВАНОВ А.Г., ОРАЗБЕКОВА А.К.

восибирской области было проведено исследование динамики разогрева почвы в весенней пленочной теплице площадью $5,0\cdot3,5\,\mathrm{M}^2$. Обогрев почвы осуществлялся нагревательным проводом ПНВСВ-0,6 по схеме, показанной на рисунок 4. Внутренний вид теплицы, в которой был проведен эксперимент, и общий вид греющего кабеля, уложенного в траншее, дан на рисунок 5.

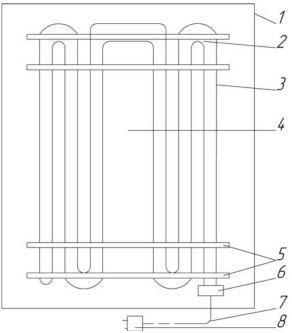


Рисунок 4-Схема укладки кабеля для обогрева почвы в теплице:

1 — контур теплицы; 2 — фиксирующие клинья; 3 — кабель нагревательный; 4 — проход в теплице; 5 — деревянные шаблоны; 6 — соединительная колодка; 7 — провод соединительный; 8 — устройство защитного отключения

Почвенные нагреватели, уложенные в песке, были расположены на глубине 30 см; тепловая изоляция котлована теплицы отсутствовала; изменение температуры и влажности наружного и внутреннего воздуха теплицы во время эксперимента записывались соответственно на термографах и гигрографах.

Датчики температуры были заложены на глубинах 5, 10, 15, 25, 35, 45, 70, 100, 130, 160 см и один на поверхности почвы. Замеры температуры почвы производились через 4 часа и записывались в таблицу. Чтобы не загромождать статью, здесь приведены данные начала и конца разогрева (таблица 1 и 2). По данным этих таблиц были построены в указанных горизонтах кривые разогрева почвы (рисунок 6 и рисунок 7). Кривая разогрева, снятая на

глубине 5 см не показана, чтобы не затенять основные графики.

Рисунок 5-Общий вид греющего кабеля в тран-

МЕТОДИКА ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНЫХ ПОЛЕЙ В ПОЧВЕ И ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ОГРАЖДЕНИЯ

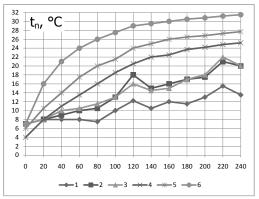
Таблица 1 – Температура почвы в начале разогрева, °C

глу- бина (см)	№ дат- чика	время замеров, час.												
		0	4	8	12	16	20	24	28	32	36	40	44	
0	1	6,5	1,4	0,8	2,0	6,7	9,4	7,6	5,0	4,7	5,65	8,1	8,6	
5	2	8,35	5,3	5,0	5,5	12,4	12,6	10,3	8,65	8,4	8,4	10,6	11,3	
10	3	6,6	5,0	4,4	4,8	6,6	9,0	9,7	8,5	7,9	8,2	8,7	9,8	
15	4	6,0	5,3	5,2	5,7	7,2	8,65	9,7	9,5	9,1	9,25	9,6	10,1	
25	5	4,05	5,15	5,6	6,2	7,4	8,0	9,2	10,1	10,0	10,9	11,3	11,6	
35	6	6,5	7,5	8,6	9,65	10,1	10,5	12,0	12,4	13,3	14,0	14,5	15,0	
45	7	7,8	10,0	11,6	13,9	14,9	15,8	18,7	19,0	19,9	20,9	21,3	21,8	
70	8	3,7	4,35	5,1	6,7	6,85	7,6	8,85	8,85	9,4	9,85	10,3	10,6	
100	9	5,0	5,25	5,8	6,7	6,8	7,3	7,3	7,35	7,8	8,2	8,5	8,75	
130	10	4,1	4,1	4,1	4,1	4,1	4,1	4,5	5,1	5,1	5,2	5,35	5,5	
160	11	3,7	3,7	3,7	3,7	3,6	3,75	3,85	3,8	3,85	3,85	3,85	3,95	

Таблица 2 – Температура почвы в конце разогрева, °C

глуби- на (см)	№ дат- чика	время замеров, час.											
		188	192	196	200	204	208	212	216	220	224	228	
0	1	14,2	15,1	13,3	12,9	12,9	14,2	19,9	15,25	15,6	15,25	14,25	
5	2	15,55	18,9	17,3	17,2	16,4	20,4	20,5	19,1	18,8	18,7	18,8	
10	3	19,9	20,0	18,85	17,1	17,65	19,3	21,0	21,65	20,85	20,1	29,1	
15	4	18,4	19,0	18,35	17,7	17,25	17,8	20,6	21,4	22,5	22,4	20,65	
25	5	23,6	23,8	24,3	24,4	24,4	24,5	24,65	24,75	24,8	24,9	24,9	
35	6	27,2	27,3	27,4	27,45	27,55	27,6	27,6	27,7	27,7	27,75	27,8	
45	7	30,9	30,95	31,0	31,05	31,1	31,15	31,1	31,2	31,2	31,25	31,25	
70	8	23,05	23,0	23,2	23,35	23,35	23,4	23,4	23,5	23,5	23,6	23,6	
100	9	17,6	17,85	18,0	18,15	18,2	18,4	18,6	18,7	18,9	18,85	18,7	
130	10	14,6	14,55	14,7	14,9	15,1	15,25	15,3	15,25	15,45	15,8	15,9	
160	11	8,0	8,0	8,1	8,35	8,4	8,55	8,55	8,8	8,85	8,9	9,0	

Практически температура почвы и воздуха в теплице к 6 мая соответствовала агротехническим требованиям при высадке рассады овощей на постоянное место в тепличный грунт, что и было сделано в этот день. Но эксперимент был продолжен еще до 9 мая.


Из анализа кривых разогрева видно, что на глубинах 25, 35, 45, 70, 100 и 130 см увеличение температуры происходит по экспоненте и практически к концу эксперимента процесс разогрева уже закончился или заканчивался (глубина 130 см). И только на глубине 160 см разогрев почвы еще продолжался. Быстрее всего он заканчивался в слоях почвы, прилегающих к нагревателям, и медленнее, в силу запаздывания процессов теплопередачи в почве, в слоях, удаленных от нагревателей. Исключение составляют лишь ПОЛЗУНОВСКИЙ ВЕСТНИК №2/2 2011

кривые, полученные на поверхности почвы и глубине 10 и 15 см, так как на этих горизонтах сильно сказывается влияние солнечной радиации. Здесь изменение температуры носит возрастающий синусоидальный характер.

Из анализа кривых разогрева на поверхности почвы и глубинах 10 и 15 см следует, что температурные максимумы выражены более четко, чем температурные минимумы, что еще раз подтверждает выводы наши и других авторов [3], о том, что составляющие теплового баланса в ночное время изменяются незначительно и тепловые процессы носят практически стационарный характер. Амплитуды в зависимости от глубины горизонта смещены во времени.

Как видно из графиков на рисунок 7 температура почвы в нижних слоях перед нача-

лом эксперимента была довольно низкая и равнялась на глубине 70 см +3,7°C, 100 см +5°C, 130 см - +4,1°C, 160 см - +3,7°C. Как указывалось выше, тепловая изоляция котлована в теплице отсутствовала, поэтому тепловой поток от почвенных нагревателей после их включения устремился не только к поверхности почвы, но и в нижние слои.

т, час

Рисунок 6 - Изменение температуры почвы над нагревателями при разогреве теплицы:
1 — температура поверхности почвы; 2,3, 4,5,6 — температура на глубине соответственно 10, 15, 25, 35, 45 см

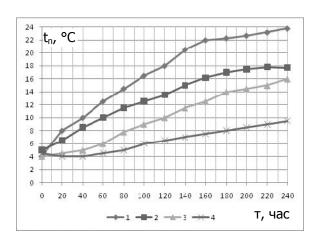


Рисунок 7-Изменение температуры почвы над нагревателями при разогреве теплицы:
1, 2,3, 4 — температура на глубине соответственно 70, 100, 130, 160 см

К концу эксперимента температура почвы на глубине 160 см стала выше начальной на 5,4°С, 130 см — на 11,7°С, 100 см — на 13,8°С и на глубине 70 см — на 19,8 °С, что подтверждает выводы результатов исследований в ВИЭСХе [5] о том, что в весенних теплицах, отопительный сезон которых начинается в конце зимы или ранней весной, необходимо делать тепловую изоляцию всего котлована, так как потери тепловой энергии в окружающий грунт значительные и наблюдаются по всей площади теплицы.

Электрическая энергия, затрачиваемая на разогрев теплицы, измерялась однофазным счетчиком активной энергии для двухпроводной системы типа СА1. Электрический ток и напряжение в сетях измерялись соответственно прибором «клещи» типа Ц91 ГОСТ 9071-59 и вольтметром астатическим типа АСТВ.

В работе использовались данные западно-сибирской метеостанции: облачность, средние за последние 10 лет значения температуры наружного воздуха и поверхности открытого грунта и другие.

СПИСОК ЛИТЕРАТУРЫ

- 1. Каганов, М.А. Вопросы методики расчета параметров измерительных схем с полупроводниковыми термосопротивлениями /М.А. Каганов- Сб. тр. по агрономической физике, вып. 8. М.: Сельхозиздат, 1960. С. 223-243.
- 2. Чудновский, А.Ф. Полупроводниковые приборы в сельском хозяйстве/ А.Ф. Чудновский, Б.М. Шлимович– Л.: Наука, 1970. 343 с.
- 3. Ануфриев, Л.Н. Метод теплотехнического расчета не отапливаемых культивационных сооружений (ночной режим) / Л.Н. Ануфриев, Г.М. Позин / Сборник трудов Гипронисельпрома. М.: Стройиздат, 1967. Выпуск 1. С. 162-174.
- 4. Почвы СССР. Справочник. Т.В. Афанасьева, В.И. Василенко, Т.В. Терешина, Б.В. Шеремет; Отв. ред. Г.В. Добровольский. М.: Мысль, 1979. 380 с.
- 5. Вишняк, Н.Н. Исследование систем отопления почвы и субстрата зимних и весенних теплиц // Водоснабжение и санитарная техника. 1970. №11.

Иванов А.Г., доцент, кафедра ЭиАСХ, НГАУ;

Оразбекова А.К., ассистент кафедра электроснабжения, КАТУ.