# ОПРЕДЕЛЕНИЕ ФУНКЦИОНАЛЬНЫХ СВЯЗЕЙ ЭНЕРГЕТИЧЕСКИХ ВОЗДЕЙСТВИЙ ПРИ СОЗДАНИИ ЭЛЕКТРОТЕХНОЛОГИЙ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ, ИСПОЛЬЗУЮЩИХ МЕХАНОАКТИВАЦИЮ И ТРЕНИЕ

#### В.М. Коротких

В статье рассмотрены методы определения функциональных связей энергетических воздействий для создания многокритериальных управляемых электротехнологий, использующих механоактивацию и трение с инициализацией самораспространяющегося высокотемпературного синтеза на восстанавливаемой рабочей поверхности сельскохозяйственного инструмента.

Ключевые слова: трение, активная мощность, механоактивация, самораспространяющийся высокотемпературный синтез (CBC), функциональная связь.

В условиях современного развития эффективных электротехнологий большую роль играет определение энергетических харатеристик переходных процессов электромеханических систем вызванных трением. Тепловые воздействия в трибологических системах определяют не только надёжность работы силовых установок, агрегатов, отдельных узлов, но и ход технологических циклов. Для исследования, эволюции развития и динамики протекания физических процессов, необходимы новые методы регистрации, контроля и управления. Такими методами являются электрические измерения неэлектрических величин, обладающие высоким быстродействием и точностью, способными в реальном масштабе времени исследовать динамику любого физического процесса, включающего износ, разрушение, а также восстановление рабочей поверхности.

Требуемые технические прочностные и антифрикционные свойства, а также сохранение этих свойств, при различных энергетических воздействиях в зоне контакта, обеспечивает применение соответственно продуктов самораспространяющегося высокотемпературного синтеза (СВС) [1]. Это – интерметаллиды, бориды, карбиды, силициды и т. д. Спектр их использования в качестве износостойких покрытий очень широк: от атомной энергетики до сельхозмашиностроения [2]. Рабочие участки должны выдерживать высокие удельные давления при значительных разогревах. Вот почему восстановление рабочих поверхностей оборудования и инструмента одновременно с экзотермическим взаимодействием СВС даёт возможность создания новых энергоэффективных электро-

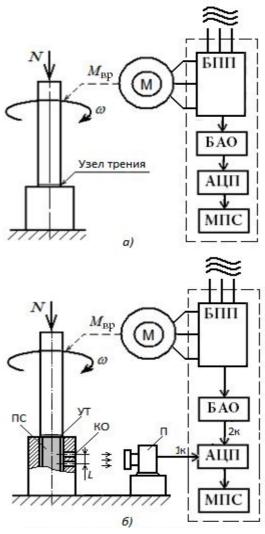



Рисунок 1 — Схема экспериментальной электроустановки

технологий использующих трение, в том числе агропромышленного назначения (АПН).

### Моделирование энергетических воздействий

«Идеальную» трибологическую систему (рисунок 1, а), в которой износ отсутствует, химические реакции в зоне трения не протекают, а коэффициент трения  $\mu$  в исследуемом интервале времени остается неизменным представим в виде силы трения  $F_{mp}$ . выраженной классическим уравнением (1)

$$F_{\text{TP}} = \mu \cdot N \,, \tag{1}$$

где N — нормальное давление,  $\mu$  — коэффициент трения.

Энергетической характеристикой будет мощность трения

$$P_{\text{mex}} = \mu \cdot N \cdot \upsilon, \qquad (2)$$

где u — скорость относительного скольжения.

Для вращающейся системы мощность трения определится формулой

$$P_{\text{Mex}} = \mu \cdot M_{\text{TP}} \cdot \omega \tag{3}$$

где  $\omega$  – угловая скорость относительного скольжения;  $M_{\rm TP}$  – момент силы трения.

Если вся механическая энергия при трении превращается в тепло, тогда справедливо

$$P_{\text{Mex}} = \frac{dQ}{dt}, \qquad (4)$$

где Q — количество теплоты, выделяемое в узле трения;  $\frac{dQ}{dt}$  — скорость тепловыделения.

С другой стороны, момент  $M_{\text{TP}}$  силы трения уравновешивается в процессе вращающим моментом  $M_{\text{BP}}$ , который создаётся технической системой электромотора M, в качестве которого используется трёхфазный асинхронный двигатель (рисунок 1, a, б).

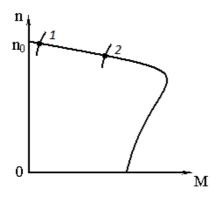



Рисунок 2 – Механическая характеристика

При изменении нагрузки на валу изменяется частота вращения ротора (рисунок 2),

что приводит к изменению скольжения (при S=1 – пуск; при S≤1 – разгон), тока, индуктивного сопротивления и коэффициента мощности *соs*ф (рисунок 3).

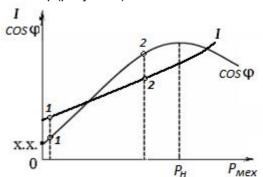



Рисунок 3 — Зависимость коэффициента мощности от нагрузки на валу

В компоненте активной мощности при увеличении механической нагрузки меняется ток и фазовый сдвиг. Коэффициент мощности определяется соотношением

$$\cos \varphi_1 = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2}}$$

где P, Q, S – активная, реактивная и полная мощность двигателя соответственно. Активная мощность P =  $P_{\text{мех}}$  +  $\Delta P$ , где  $P_{\text{мех}}$  – мощность на валу (полезная мощность);  $\Delta P$  – мощность потерь равная

$$\Delta P = \Delta P_{\rm 3D} + \Delta P_{\rm cm} + \Delta P_{\rm mex},$$

где  $\Delta P_{\text{эл}}$  – электрические потери (потери на нагрев обмоток);

 $\Delta P_{\rm cr}$  – потери в стали (потери на нагрев сердечника);

 $\Delta P_{\text{мех}}$  – механические потери.

Электрические потери  $\Delta P_{\rm Эл}$  зависят от токов в обмотках и возрастают при увеличении нагрузки на валу. Потери в стали не зависят от нагрузки на валу, а зависят от подведенного к обмотке статора напряжения. В номинальном режиме  $P_{\rm H}$ ,  $cos\phi$  = 0,85÷0,95, при холостом ходе (X.X.)  $cos\phi_{\rm xx}$  = 0,08÷0,12, участок 1–2 (рисунок 3) соответствует квазилинейной зависимости, так как реактивная мощность Q остается неизменной на всём режиме механического нагружения.

Если пренебречь потерями из-за их малости и скольжением S, которое на участке нагружения не превышает 0,02 (рисунок 2), то зависимость активной мощности  $P_{\rm эл}$  (электрической) от механической мощности трения  $P_{\rm мех}$  можно считать равными, с относительной погрешностью, не превышающей 3–4 %.

Для получения функциональной зависимости электрических параметров от механических воздействий и выделения управляю-

#### ОПРЕДЕЛЕНИЕ ФУНКЦИОНАЛЬНЫХ СВЯЗЕЙ ЭНЕРГЕТИЧЕСКИХ ВОЗДЕЙСТВИЙ ПРИ СОЗДАНИИ ЭЛЕКТРОТЕХНОЛОГИЙ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ. ИСПОЛЬЗУЮЩИХ МЕХАНОАКТИВАЦИЮ И ТРЕНИЕ

щих сигналов используется экспериментальная установка (рисунок 1). Узел трения (УТ) задаёт механические воздействия, момент вращения обеспечивает асинхронный двигатель переменного тока (М), а необходимую силу трения задаёт сила давления N (1).

#### Измерение активной мощности, модели электрических сигналов

Электрическая часть содержит аналоговый блок первичного преобразования (БПП), блок аналоговой обработки сигналов (БАО), аналого-цифровой преобразователь (АЦП) с USB-портом и микропроцессорная система (MΠC).

Работа предполагаемого устройства основана на измерении меняющейся активной мощности [3] в цепи питания электродвигателя и сравнении её с заданным значением механических воздействий.

Первичное преобразование мгновенных значений напряжения и тока в пропорциональные сигналы  $U_x(t)$  и  $U_v(t)$  соответственно осуществляется в блоке первичных преобразований (БПП) (рисунки 1, 4).

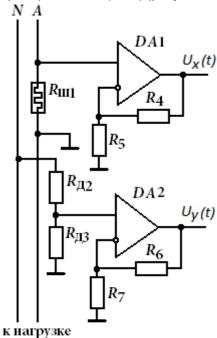



Рисунок 4 – Аналоговый блок первичных преобразований (БПП)

Сигнал  $U_x(t)$  формируется падением напряжения на сопротивлении шунта  $R_{\mu}$ , фаза которого совпадает с фазой тока. На делителе, состоящего из резисторов  $R_{\mathcal{I}_1}$  и формируется сигнал  $U_{\nu}(t)$ , совпадающий с фазой напряжения. Операционные усилители DA1 и DA2 (рисунок 4) имеют коэффициенты усиления по напряжению:

$$k_{\rm U1} = \frac{1}{\rm v1} \; ,$$

$$k_{U2} = \frac{1}{V^2}$$
,

где  $\gamma_1 = \frac{R_4}{R_4 + R_5}$  – коэффициент обратной связи DA1;  $\gamma_1 = \frac{R_6}{R_6 + R_7}$  – коэффициент обратной связи DA2

Далее сигналы  $U_x(t)$  и  $U_v(t)$  подаются на входы четырехквадрантного перемножителя, реализующего передаточную функцию

$$U = k \cdot U_{x}(t) \cdot U_{y}(t) \tag{5}$$

где k — коэффициент пропорциональности.

$$U_x(t) = R_w \cdot i \cdot k_{U1} = k_{U1} \cdot R_w \cdot I_m \sin(\omega t + \varphi)$$
  
=  $U_{xm} \sin(\omega t + \varphi)$ ,

$$= U_{xm} \sin(\omega t + \phi),$$

$$U_{y}(t) = k_{H} \cdot k_{U1} U_{m} \sin \omega t = U_{ym} \sin \omega t, \quad (6$$

где  $\varphi$  – угол сдвига фаз напряжения и тока,

 $R_{\it Ш}$  – сопротивление шунта  $k_{\it Д} = rac{R_{\it Д3}}{R_{\it Д2} + R_{\it Д3}}$  – коэффициент деления входного напряжения. Тогда формулу (5) на основании (6) можно переписать

$$U = U_{ym} sin\omega t \cdot U_{xm} \sin(\omega t + \varphi)$$

$$U = \frac{1}{2}U_{xm}.U_{ym}cos\varphi + \frac{1}{2}U_{xm} \cdot U_{ym}cos(2\omega t + \varphi)$$
(7)

Первое слагаемое в формуле (7) - низкочастотная составляющая, при неизменности амплитуд представляет постоянную величину, пропорциональную активной мощности Р, а второе - высокочастотная составляющая, равная мгновенной величине реактивной мощности, частота которой вдвое больше частоты питающего напряжения.

Подав сигнал 
$$U=U_1$$
 
$$U_1=\frac{1}{2}U_{xm}.U_{ym}cos\varphi+\frac{1}{2}U_{xm}\cdot U_{ym}cos\left(2\omega t+\varphi\right)$$
 с выхода четырехквадрантного перемножи-

теля DA1 на неинвертирующий вход операционного усилителя DA1 (рисунок 5), имеющего коэффициент усиления  $k_{U}$  = 2, а через разделительный конденсатор С на инверти-

рующий вход сигнал 
$$U_2 = \frac{1}{2} U_{xm}.U_{ym} \cos(2\omega t + \varphi)$$

будем иметь на выходе усилителя DA1, работающего в режиме фильтра нижних частот, сигнал

$$U_{\text{Bb/X}(p)} = k_U (U_1 - U_2).$$
 (8)

 $U_{{\it gbiX}\,({
m p})}=k_U\,(U_1-U_2).$  (8) Подставив значения  $U_1$  и  $U_2$  в уравнение (8) получим

$$\begin{split} &U_{\textit{BDIX}(p)} = \\ &2\left[\frac{1}{2}U_{xm}.U_{ym}cos\varphi + \frac{1}{2}U_{xm}\cdot U_{ym}\cos(2\omega t + \varphi) - \right. \\ &\left. \frac{1}{2}U_{xm}.U_{ym}\cos\left(2\omega t + \varphi\right)\right] \end{split}$$

$$U_{\text{BLIX}(p)} = U_{xm} \cdot U_{ym} \cos \varphi \tag{9}$$

т. е. выражение активной мощности.

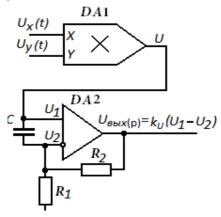



Рисунок 5 – Блок аналоговой обработки сигнала (БАО)

Измерение активной мощности и её динамики в процессе исследования определяют функциональные связи в реальном масштабе времени не только с коэффициентом трения, нагрузкой, но и температурой в зоне трения для рассматриваемой триботехнической схемы. Это дает возможность активно управлять тепловым воздействием в ходе технологического процесса.

#### Моделирование тепловых процессов при инициализации СВС трением

Для определения количества тепла, прошедшего через поверхность трения в единицу времени в направлении перпендикулярном плоскости трения, можно воспользоваться законом Фурье [4], согласно которому

$$q = -\lambda \, \frac{\partial t}{\partial x}.\tag{10}$$

Учитывая, что  $\frac{\partial t}{\partial x} = -\frac{1}{\delta} (T_1 - T_2)$  после подстановки в выражение (10) получим:

$$q = \frac{\lambda}{\delta} (T_1 - T_2), Bm/M^2,$$
 (11)

где отношение  $\frac{\lambda}{\delta}$  – тепловая проводимость;  $T_1$  – температура поверхности трения;  $T_2$  – температура реакционного слоя;  $\lambda$  – теплопроводность;  $\delta$  – толщина реакционного слоя.

Количество тепла, выделившееся и прошедшее в единицу времени через изотермическую поверхность равную площади трения F, есть мощность трения. Тогда

$$P_{\text{Mex}} = \frac{dQ}{dt} = \int_{F1}^{F2} q \ dF,$$
 (12)

где dF — элемент изотермической поверхности, или при равномерном распределении тепла по поверхности и равенстве  $P_{\text{mex}} = P_{\text{эл}}$ ,

$$P_{\mathrm{en}} = \frac{\lambda}{\delta} \left( T_1 - T_2 \right) \cdot F,$$
где  $F$  – площадь трения.

Полное количество тепла, определяющее пропорционально энергию активации и выделившееся за время  $\tau$  на изотермической поверхности трения F для разогрева реакционной смеси до характерной температуры T температуры начала реакции, будет равно:

$$Q_{\tau} = c_{\text{M}} \cdot m \cdot (T^* - T_1) = \int_0^{\tau} P_{\text{ЭЛ}} \, dt \, \text{Дж}$$
, (13) где  $c_{\text{M}}$  – удельная теплоёмкость реакционной смеси;  $m$  – масса реакционной смеси в слое  $\delta$ .

Если произведение  $c_{\text{м}} \cdot m$  и характерная температура T для определённого стехиометрического состава величины постоянные, то температура на поверхности трения находится из выражения (13) и будет равна

$$T_1 = (c_M \cdot m)^{-1} \cdot \int_0^{\tau} P_{\ni \Pi} dt - T^*.$$
 (14)

Энергия активации взаимодействия конденсированной среды в режиме фронтального горения СВС находится оптоэлектронным методом с измерением максимальной температуры  $T_m$  [5] во фронте горения и скорости  $V_{\phi}$  фронта горения по формуле

$$E = -2R \left\{ \frac{\Delta \ln \frac{V\phi}{Tm}}{\Delta \frac{1}{Tm}} \right\},\,$$

где R — постоянная.

Далее строится график зависимости в координатах

$$1\pi(V_{\phi}/T_{\rm m}) - 1/T_{\rm m}$$

об энергии активации взаимодействия компонентов конденсированной среды в волне горения фронтального СВС судят по наклону касательной в заданной точке [6].

Скорость фронта горения  $V_{\phi}$  определяется по времени  $\Delta t$ , т. е. времени появления температурных максимумов, на базовом расстоянии L (рисунок 6) и равна  $V_{\rm o} = L/\Delta t$ .

При инициализации СВС трением реактор (Р) с порошковой смесью (ПС) размещают под узлом трения (УТ), а пирометр (П) устанавливают напротив кварцевых окон (КО), имеющих базовое расстояние L (рисунки 1, б, 6). Для получения температурного профиля и временной диаграммы электрической мощности Рэл применён двух канальный аналогоцифровой преобразователь (АЦП) ВМ8020, работающий в одном из режимов виртуального измерительного прибора. Это - USB осциллограф или самописец, управляемый микро ЭВМ. Его технические характеристи-

## ОПРЕДЕЛЕНИЕ ФУНКЦИОНАЛЬНЫХ СВЯЗЕЙ ЭНЕРГЕТИЧЕСКИХ ВОЗДЕЙСТВИЙ ПРИ СОЗДАНИИ ЭЛЕКТРОТЕХНОЛОГИЙ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ, ИСПОЛЬЗУЮЩИХ МЕХАНОАКТИВАЦИЮ И ТРЕНИЕ

ки на различных режимах приведены в таблице 1.

Таблица 1 —Технические характеристики USB — осциплографа, самописца

| Количество     | 2                             |
|----------------|-------------------------------|
| каналов        |                               |
| Частота        | 100 Гц 200 КГц                |
| дискретизации  | 0,01 Гц 200 КГц (самописец)   |
| Глубина памяти | 1126 отсчетов/канал           |
| чтение         | (1 канал), 563 отсчетов/канал |
| через буфер:   | (2 канала)                    |
| Потоковое      | 64К отсчетов/канал (1 или     |
| чтение         | 2 канала)                     |
| Входное        | -20 +20 В (аппаратно 2        |
| напряжение     | поддиапазона)                 |
| Разрядность    | 10 бит                        |
| АЦΠ            |                               |
| Синхронизация  | абсолютная (по нарастающему   |
|                | /спадающему фронту),          |

Если определено время появления первого максимума t, то время предела интегрирования (13, 14) будет:  $\tau=t-t_0$ , где  $t_0=L_0$ / $V_{\Phi}$ ,  $L_0$  — расстояние от поверхности трения до центра первого оптического канала (рисунок 6). Тогда энергия активации E и температура поверхности трения  $T_1$  будут определены активной мощностью.

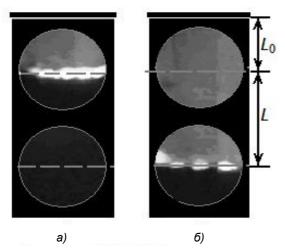



Рисунок 6 — Оптические сигналы: а) температурный максимум через время t; б) тоже через время t+∆t

#### Выводы

Экспериментально подтверждено соответствие механической модели энергетиче-

ского воздействия электрической мощности.

В рамках применяемых моделей выявлены функциональные связи механического воздействия с характерной температурой начала реакции СВС, максимальной температурой во фронте горения, а также со скоростью фронта горения и энергией активации.

При восстановления рабочих поверхностей оборудования и инструмента сельскохозяйственного назначения данная методика даёт возможность управлять качеством изделия и параметрами технологического процесса в реальном масштабе времени.

Область применения рассмотренной методики может быть распространена на аналогичные задачи в управляемых электротехнологиях, использующих механоактивацию и трение, для инициализации СВС на восстанавливаемой поверхности.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Мержанов, А.Г. Самораспространяющийся высокотемпературный синтез / А.Г. Мержанов. Физ. Химия. Современные проблемы.- М.: Химия, 1983. 5 с.
- 2. Евстигнеев, В.В. Интегральные технологии самораспространяющегося высокотемпературного синтеза / В.В. Евстигнеев, Б.М. Вольпе, И.В. Милюкова, Г.В. Сайгутин. М.: Высшая школа, 1996. 273 с.
- 3. Коротких, В.М., Четырехквадрантные перемножители в датчиках преобразования активной мощности в частоту // Датчики электрических и неэлектрических величин; доклады Второй Международной конференции / В.М. Коротких, М.А. Гумиров. Барнаул: Изд-во АлтГТУ, 1995.
- 4. Лыков, А.В. Теория теплопроводности / А.В. Лыков. М.: Высшая школа, 1967. с. 421—427.
- 5. Патент №2099674 РФ, Способ измерения яркостной температуры объекта / В.М. Коротких, П.Ю. Гуляев, М.А. Гумиров, А.В. Еськов, В.В. Евстигнеев. № 96113418, заяв.1996.07.01; опубл. 1997.12.20.
- 6. Патент № 2189032 РФ, Способ определения энергии активации взаимодействия компонентов конденсированной электропроводной среды в волне горения фронтального самораспространяющего высокотемпературного синтеза / В.В. Евстигнеев, П.Ю. Гуляев, В.М. Коротких, С.П. Рябов. № 2000123119, заявл. 05.09.00; опубл. 10.09.02.

**Коротких В.М.,** проф., доц., зам. зав. каф. «Общая электротехника», АлтГТУ им. И.И. Ползунова, тел. 8(3852) 29-07-78, E-mail:vkorot@mail.ru