ГИДРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С ОСЕВОЙ ГИДРОТУРБИНОЙ НОВОЙ ОРИГИНАЛЬНОЙ КОНСТРУКЦИИ И ГИДРАВЛИЧЕСКИЙ СТЕНД ДЛЯ КОМПЛЕКСНОГО МОДЕЛИРОВАНИЯ ПРОТОЧНЫХ ЧАСТЕЙ ГИДРОТУРБИН

В.М. Иванов, Т.Ю. Иванова, Е.П. Жданов, А.А. Блинов, С.Г. Пчелинцев

В работе приведены разработанные авторами осевая гидротурбина новой оригинальной конструкции и гидравлический стенд для комплексного моделирования проточных частей гидротурбин, контрольно-измерительная аппаратура и методы замера экспериментальных величин.

Ключевые слова: осевая гидротурбина, конструкция, методика, расчет, гидравлический стенд.

Статья написана в связи с проведением НИР в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 — 2013 годы по проблеме «Гидроэнергетические установки (ГЭУ) новой оригинальной конструкции на базе осевых гидротурбин».

Энергосистема Алтайского края относится к разряду остродефицитных. Более 50% электроэнергии Алтайский край получает извне. В условиях рынка это уменьшает конкурентоспособность производимой в крае сельскохозяйственной и промышленной продукции. Кроме этого слабая энерговооружённость отдельных сельскохозяйственных районов в виду дороговизны строительства ли-

ний электропередач, а зачастую просто невозможности их прокладки, делает хозяйственную деятельность в них нерентабельной. В решении данной проблемы существенную роль может оказать использование дешёвого, простого в изготовлении и эксплуатации, экономичного и экологичного автономного источника электроэнергии, каковым может являться ГЭУ.

В настоящий момент имеются отдельные отечественные и зарубежные разработки ГЭУ мощностью от 4 до 50 кВт, недостатками которых являются их дороговизна и отсутствие широкого набора типоразмеров на различные мощности при различных располагаемых расходах и напорах водотоков.

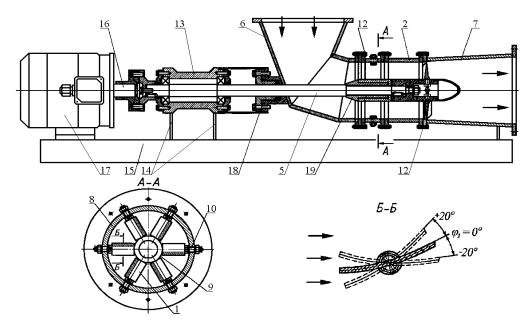


Рисунок 1 – Осевая гидротурбина в сборе с рамой 15 и электрогенератором 17

ГИДРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С ОСЕВОЙ ГИДРОТУРБИНОЙ НОВОЙ ОРИГИНАЛЬНОЙ КОНСТРУКЦИИ И ГИДРАВЛИЧЕСКИЙ СТЕНД ДЛЯ КОМПЛЕКСНОГО МОДЕЛИРОВАНИЯ ПРОТОЧНЫХ ЧАСТЕЙ ГИДРОТУРБИН

Дальнейшее освоение энергетических ресурсов отдалённых и труднодоступных районов требует дополнительного изучения, в том числе на основе физического моделирования.

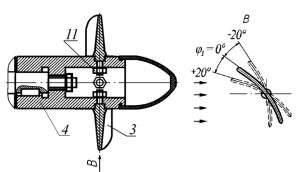


Рисунок 2 – Рабочее колесо в сборе с валом и обтекателем

Осевая гидротурбина новой оригинальной конструкции

В ГОУ ВПО «Алтайский государственный технический университет им. И.И. Ползунова» (АлтГТУ) на кафедре «Теплотехника, гидравлика и водоснабжение, водоотведение», в лаборатории комплексных исследований малых гидроузлов и МикроГЭС разработана ГЭУ с осевой гидротурбиной новой оригинальной конструкции (рисунки 1 и 2), на которую получен патент РФ на изобретение № 2371602 [1].

Осевая гидротурбина содержит направляющий аппарат (сечение A-A), рабочее колесо, размещенное в камере 2 и установленном на валу 5, водоподводящую 6 и водоотводящую 7 части.

Направляющий аппарат выполнен из соосно расположенных внешнего 8 и внутреннего 9 корпусов. Лопатки 1 направляющего аппарата выполнены изогнутой формы и развернуты по направлению вращения рабочего колеса (сечение Б-Б), равномерно закреплены одними концами на внутреннем корпусе, а другими — соединены с внешним корпусом с помощью резьбового соединения 10 с возможностью поворота.

Криволинейной формы лопасти 3 рабочего колеса закреплены на его корпусе 4 посредством резьбового соединения 11 также с возможностью поворота.

Камера рабочего колеса соединена одним торцом с водоотводящей частью, а другим — с внешним корпусом направляющего аппарата, который соединён с водоподводящей частью.

Соединения герметичны и выполнены с помощью фланцев 12.

Водоподводящая часть выполнена изогнутой формы из стальных трубных элементов и конфузоров, соединенных сваркой. Водоотводящая часть в виде диффузора, а также камера рабочего колеса и внешний корпус направляющего аппарата выполнены из стандартных трубных элементов, изготовленных на определённое давление, что гарантирует их прочность.

К водоподводящей части приварен корпус сальникового уплотнениями 18 для вала.

Внутренний 9 корпус направляющего аппарата установлен на валу 5 посредством втулки 19.

Корпус 4 рабочего колеса соединен с внутренним корпусом 9 направляющего аппарата, установленного на одном из концов вала 5. Последний расположен горизонтально относительно плоскости вращения рабочего колеса и размещен посредством подшипникового узла 13 на опорах 14, закрепленных в раме 15 из сварных металлических конструкций. Вал 5 соединён с валом 16 электрогенератора 17, в качестве которого может быть использован трехфазный асинхронный двигатель с короткозамкнутым ротором общепромышленного использования.

Электрогенератор подключен к блоку автоматического управления электрической нагрузкой (БАУЭН), что позволяет поддерживать электрические характеристики вырабатываемого напряжения в стандартных пределах.

Поворачивать лопатки направляющего аппарата и лопасти рабочего колеса более чем на -20° нецелесообразно, так как это приводит к закрытию прохода для воды, и более чем на +20°, так как при этом возрастает расход воды, приводящий к резкому увеличению гидравлического сопротивления настолько, что возникает необходимость определения новых расчётных положений углов установки лопаток направляющего аппарата и лопастей рабочего колеса для сохранения высокого к.п.д.

Угол установки лопатки направляющего аппарата и угол установки лопасти рабочего колеса образованы осями, соответственно, лопатки и лопасти и горизонтальной осью вала. Расчетные положения углов установки лопаток направляющего аппарата и лопастей рабочего колеса соответствуют оптимальному к.п.д. при определенных напорах и расходах воды.

ИВАНОВ В.М., ИВАНОВА Т.Ю., ЖДАНОВ Е.П., БЛИНОВ А.А., ПЧЕЛИНЦЕВ С.Г.

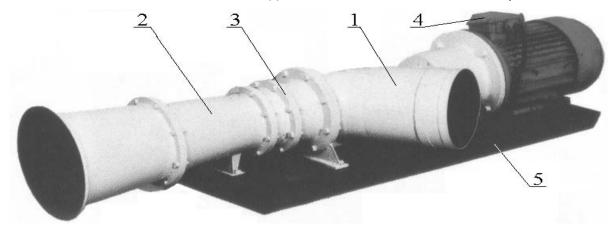


Рисунок 3 – Внешний вид осевой гидротурбины с электрогенератором для ГЭУ с параметрами:

мощность — 1...10 кВт; расход воды — 10...100 л/с; напор — 1...10 м: 1 — подводящая часть; 2 — отводящая часть; 3 — осевая гидротурбина; 4 — электрогенератор; 5 — рама опорная

Осевая гидротурбина работает следующим образом.

Поток воды, проходя через водоподводящую 6 часть, поступает на лопатки 1 направляющего аппарата, а далее — на лопасти 3 рабочего колеса. После чего вода направляется в водоотводящую часть 7. При значительном изменении напора и расхода для обеспечения высокого к.п.д. осевой гидротурбины осуществляется регулирование расхода воды одновременной перенастройкой вручную положения лопаток направляющего аппарата и лопастей рабочего колеса. При этом энергия воды преобразуется в механическую энергию вала, соединенного с валом электрогенератора, превращающего механическую энергию в электрическую.

Таким образом, использование предлагаемого изобретения приводит к упрощению конструкции, расширению эксплуатационных возможностей осевой гидротурбины, снижению трудоемкости изготовления при сохранении высокого к.п.д. осевой гидротурбины, способствует повышению надежности и удобства эксплуатации, не требуя присутствия высококвалифицированного персонала, и позволяет применять осевую гидротурбину для преобразования энергии малых потоков воды с небольшими расходами и напорами в электрическую энергию.

На рисунке 3 представлен внешний вид осевой гидротурбины с электрогенератором.

Гидравлический стенд для комплексного моделирования проточных частей гидротурбин для МикроГЭС

Испытания моделей проточных частей и рабочих колес гидротурбин проводятся на стенде (рисунок 4) в лаборатории комплексных исследований малых гидроузлов и МикроГЭС АлтГТУ.

На стенде, предназначенном для работы с напором до 13 м и расходом до 300 л/с, можно выполнять исследования как моделей гидротурбин в целом, так и отдельных элементов их проточных частей.

Стенд включает в себя следующие основные элементы: четыре горизонтальных центробежных питательных насоса 26 модели К 160/30 с приводами от электродвигателей 27 переменного тока 380 В, мощностью по 22 кВт и частотой вращения 1500 об/мин, напорный бак 1 размером 4,0х1,3х1,3 м, турбинный блок для МикроГЭС 16, приёмный бак 22 размером 6,0x2,6x2,0 м, сбросной бак 24 размером 6.0х2.0х1.3 м и контрольноизмерительную аппаратуру. Напорный бак на высоте 13 м над уровнем пола опирается на раму, подвешенную на четырёх несущих железобетонных колоннах. Приёмный и сбросной баки установлены на бетонном фундаменте

Подача воды в напорный бак 1 производится по насосному водоводу 8 из сбросного бака 24 питательными насосами 26. К напорному баку присоединён напорный водовод 9 с расходомерной диафрагмой 10 и дифференциальным манометром 12. К напорному водоводу после напорной задвижки 11 присоединена своей водоподводящей частью гидротурбина 16. К водоотводящей части (отсасывающей трубе) гидротурбины присоединена отводящая задвижка 20.

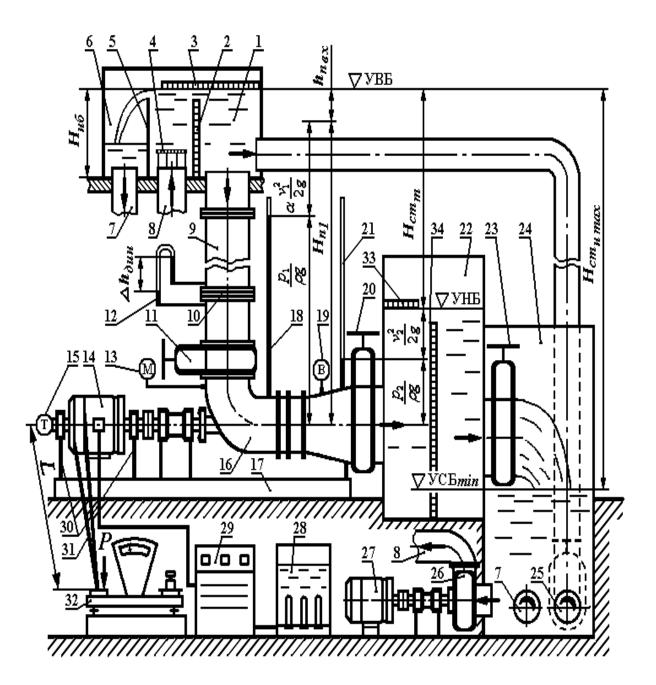


Рисунок 4 — Гидравлический стенд для комплексного моделирования проточных частей гидротурбин для МикроГЭС:

1 — напорный бак; 2 — трубчатый успокоитель; 3 — плавающая решётка; 4 — растекатель; 5 — сливное ребро; 6 — боковой карман напорного бака; 7 — сливной трубопровод; 8 — насосный водовод; 9 — напорный водовод; 10 — расходомерная диафрагма; 11 — напорная задвижка; 12 — дифференциальный манометр; 13 — манометр; 14 — балластный электрогенератор (асинхронный двигатель); 15 — тахометр; 16 — гидротурбина; 17 — опорная рама гидротурбины; 18 — входной пьезометр; 19 — вакуумметр; 20 — отводящая задвижка; 21 — выходной пьезометр; 22 — приёмный бак; 23 — сливная задвижка; 24 — сбросной бак; 25 — регулируемый сбросной трубопровод со сбросной задвижкой; 26 — питательный насос; 27 — электродвигатель питательного насоса; 28 — блок балластной нагрузки (электрокотёл); 29 — блок автоматического управления электрической нагрузкой (БАУЭН); 30 — подшипниковые опоры балластного электрогенератора; 31 — рычаг; 32 — весы; 33 — плавающая решётка; 34 — трубчатый успокоитель

Вода, пройдя рабочие органы гидротурбины, через отсасывающую трубу и отводящую задвижку 20 поступает в приёмный бак 22 нижнего бьефа, а из него через сливную задвижку 23 в сбросной бак 24.

При необходимости стабилизации уровня свободной поверхности за гидротурбиной в приёмном баке 22 можно устанавливать трубчатый успокоитель 34 и плавающую решётку 33.

Центробежные насосы работают при постоянной частоте вращения и примерно при постоянном напоре, поэтому количество подаваемой ими воды считается постоянным.

Модельная гидротурбина испытывается на разных режимах, определяемых частотой вращения её вала, величиной открытия лопаток направляющего аппарата и углом установки лопастей рабочего колеса. Так как количество воды, протекающей через гидротурбину, зависит от режима, то возникает несоответствие между количеством воды, подаваемым насосами, и расходом ее через гидротурбину, поэтому уровень воды в напорном баке 1 существенно меняться.

Для обеспечения устойчивого положения уровня воды в напорном баке 1 по всей длине горизонтально установлено сливное ребро 5, через которое вода переливается в боковой карман 6 и затем по сливному трубопроводу 7 отводится в сбросной бак 24, а для выравнивания поля скоростей установлены плавающая решётка 3, трубчатый успокоитель 2 и растекатель 4.

Для более точной установки уровня верхнего бьефа в напорном баке 1, часть расхода сбрасывается в сбросной бак 24 через регулируемый сбросной трубопровод со сбросной задвижкой 25. Регулирование величины сбрасываемого расхода и тем самым регулирование высоты слоя воды, переливающейся через ребро 5, производится сбросной задвижкой на сбросном трубопроводе.

Сливной задвижкой 23 можно регулировать уровень воды за гидротурбиной (уровень нижнего бьефа) в приёмном баке 22. Таким образом, манипулируя сливной задвижкой 23 и сбросной задвижкой на сбросном трубопроводе 25 можно обеспечить постоянный рабочий напор при всех экспериментальных режимах. Однако на практике нет необходимости выдерживать рабочий напор постоянным, и эксперименты ведут с грубым его регулированием через указанные сливные устройства, допуская тем самым незначительные (на 1 %)

его изменения, учитываемые при замерах и расчетах.

Для определения и контроля нагрузки на вал гидротурбины имеется специальное нагрузочное устройство, состоящее из балластного электрогенератора 14, блока балластной нагрузки 28, БАУЭН 29, рычага 31 и весов 32.

В качестве электрогенератора может использоваться трехфазный асинхронный двигатель, в качестве блока балластной нагрузки используется электрокотёл с ТЭНами.

Балластный электрогенератор подключен электрическим кабелем к БАУЭН, который соединён с блоком балластной нагрузки.

Во время работы в обмотках балластного электрогенератора возникают электромагнитные поля, создающие тормозящий момент на валу электрогенератора.

Рычаг одним концом соединён с корпусом балластного электрогенератора, другим опирается на измерительную платформу весов с величиной нагрузки.

Параметры гидравлического стенда позволяют испытывать опытные образцы МикроГЭС мощностью до 30 кВт, а большей мощностью их модели.

Объекты малой гидроэнергетики могут сооружаться практически на любых водных объектах: на малых реках и ручьях, водосбросных сооружениях, канализационных коллекторах и др. На рисунках 5 – 8 приведены варианты расположения МикроГЭС.

Контрольно-измерительная аппаратура и методы замера экспериментальных величин

Контрольно-измерительная аппаратура представлена на рисунке 4, а методы замера экспериментальных величин описаны в литературе [2-4].

Расход воды Q, протекающей через гидротурбину, замеряется с помощью расходомерной диафрагмы 10 и дифференциального манометра 12. Зная величину динамического напора $h_{\partial u H}$, можно найти расход Q по формуле:

$$Q = \sqrt{2g \cdot h_{\partial u_H}}$$
 ,

где g – ускорение свободного падения. В нашем случае статический напор турбины равен разнице высот уровней в верхнем и в нижнем бъефах:

$$H_{\scriptscriptstyle Cmm} =
abla_{\scriptscriptstyle VBB} -
abla_{\scriptscriptstyle VHB}$$
, м вод. ст.

ГИДРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С ОСЕВОЙ ГИДРОТУРБИНОЙ НОВОЙ ОРИГИНАЛЬНОЙ КОНСТРУКЦИИ И ГИДРАВЛИЧЕСКИЙ СТЕНД ДЛЯ КОМПЛЕКСНОГО МОДЕЛИРОВАНИЯ ПРОТОЧНЫХ ЧАСТЕЙ ГИДРОТУРБИН

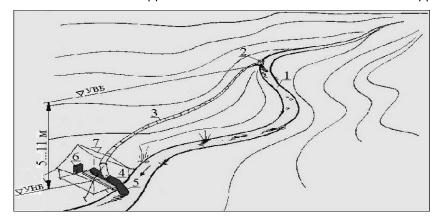


Рисунок 5 — Безплотинное расположение МикроГЭС с гибким водоводом (руковом):

- 1 река;
- 2 водозабор с заслонкой;
- 3 водовод подводящий;
- 4 МикроГЭС;
- 5 водовод отводящий;
- 6 БАУЭН;
- 7 брезентовая палатка;

УВБ – уровень верхнего бьефа:

УНБ – уровень нижнего бьефа

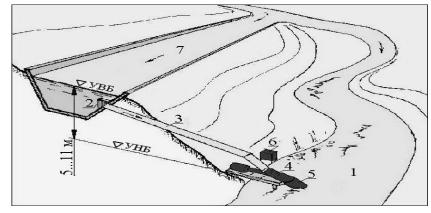


Рисунок 6 — Безплотинное расположение МикроГЭС на канале:

- 1 река;
- 2 водозабор с заслонкой;
- 3 водовод подводящий;
- 4 МикроГЭС;
- 5 водовод отводящий
- 6 *БАУЭН*:
- 7 канал деривационный

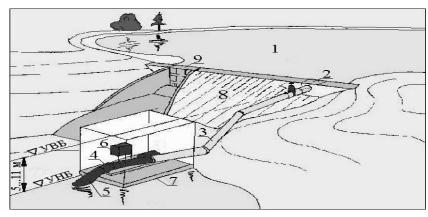


Рисунок 7 — Расположение МикроГЭС в составе малого гидроузла с земляной и водосливной плотинами:

- 1 водохранилище (озеро);
- 2 водозабор;
- 3 водовод подводящий с задвижкой (затвором);
- 4 МикроГЭС;
- 5 водовод отводящий;
- 6 *БАУЭН*:
- 7 здание МикроГЭС;
- 8 земляная плотина;
- 9 водосливная плотина

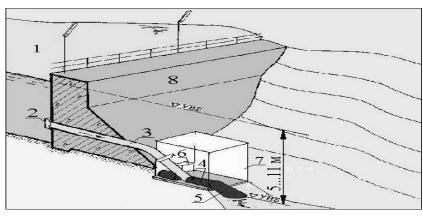


Рисунок 8 – Расположение МикроГЭС в составе малого гидроузла с бетонной плотиной:

- 1 водохранилище;
- 2 водозабор;
- 3 водовод подводящий с задвижкой (затвором);
- *4* − *МикроГЭС*;
- 5 водовод отводящий
- 6 БАУЭН:
- 7 здание МикроГЭС;
- 8 бетонная плотина

ИВАНОВ В.М., ИВАНОВА Т.Ю., ЖДАНОВ Е.П., БЛИНОВ А.А., ПЧЕЛИНЦЕВ С.Г.

При определении напора $H_{cm\ m}$ для турбин, к которым вода подводится по трубопроводу, необходимо учитывать величину скоростного напора в сечении, где замеряется давление.

Частота вращения вала модельной турбины замеряется либо тахометром 15, либо механическим или электрическим счетчиком оборотов.

Величина нагрузки Р определяется как сумма показания на шкале весов 32 и веса гири на противоположной платформе.

Крутящий момент М на валу гидротурбины составляет

$$M = P \cdot L$$

где P – полезная нагрузка на весы, H;

L - длина плеча тормоза, т. е. расстояние от оси вращения вала гидротурбины до линии действия силы Р, м.

Порядок ведения экспериментов

Лабораторные испытания моделей гидротурбин производятся при различных открытиях лопаток направляющего аппарата, которые измеряются или расстоянием в свету между двумя соседними лопатками направляющего аппарата, или выражается в долях от максимального открытия, принимаемого за единицу.

При каждом открытии регулирующего органа исследуют несколько режимов, соответствующих разным нагрузкам на валу турбины. При заданном открытии регулирующих органов и заданной нагрузке с помощью приборов определяют расход воды Q, протекающей через турбину, частоту вращения вала турбины n (об/мин) и рабочий напор $H_{cm\ m}$, а затем вычисляют приведенные числа оборотов

$$n_{I}$$
 '= $\frac{nD_{\mathrm{l}}}{\sqrt{H_{cm_{m}}}}$; приведенный расход

$$Q_I' = \frac{Q}{D_1^2 \sqrt{H_{cm_m}}};$$

коэффициент полезного действия

$$\eta = \frac{N}{N_n} = \frac{M\omega}{\rho g Q H_{cm_m}} = \frac{PL\pi n}{30 \rho g Q H_{cm_m}},$$

где D_1 – диаметр рабочего колеса гидротурбины по выходным кромкам;

 ω – угловая частота вращения вала турбины:

 ρ — плотность воды:

 $N = M\omega$ – мощность на валу турбины;

$$N_n = \rho gQH$$
 – мощность потока.

Замеряемые во время испытаний данные и результаты подсчетов сводятся в протокол, составляемый для каждого открытия регулирующего органа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Патент РФ на изобретение № 2371602, МПК F 03B 3/00, F 03B 13/00. Осевая гидротурбина / В.М. Иванов, Т.Ю. Иванова, А.А. Блинов.- № 2008100434/06; Заявл. 09.01.2008; Опубл. в Б.И., 27.10.2009, №30.
- 2. Смирнов, И.Н. Гидравлические турбины и насосы/ И.Н. Смирнов/ [Текст]: учеб. пособие для энерг. и политехнич. вузов. - М.: Высшая школа, 1969. – 400 c.
- 3. Ковалев, Н.Н. Гидротурбины: конструкции и вопросы проектирования/ Н.Н. Ковалев/ [Текст] -Л.: Машиностроение, 1971. – 584 с.
- 4. Кривченко, Г.И. Гидравлические машины: Турбины и насосы/ Г.И. Кириченко/ [Текст]: учебник для вузов.- 2-е изд., перераб. – М.: Энергоатомиздат, 1983. – 320 с.

Иванов В.М., д.т.н., проф., зав. каф. «Теплотехника, гидравлика и водоснабжение, водоотведение» АлтГТУ им. И.И. Ползунова;

Иванова Т.Ю., к.т.н., доц. каф. «Теплотехника, гидравлика и водоснабжение, водоотведение» АлтГТУ им. И.И. Ползунова;

Жданов Е.П., доц. каф. «Теплотехника, гидравлика и водоснабжение, водоотведение» АлтГТУ им. И.И. Ползунова, к.э.н. (соискатель);

Блинов А.А., аспирант каф. «Теплотехника, гидравлика и водоснабжение, водоотведение» АлтГТУ (соискатель):

Пчелинцев С.Г., доц. каф. «Строительство» Северо-Кавказский государственный технический университет СевКавГТУ, г. Ставрополь.