СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ СОЛЕЙ 1-R₁-3-НИТРО-4-R₂-5-R-1,2,4-ТРИАЗОЛИЕВ И 3-НИТРО-1-[1'-(3'-НИТРО-4'-МЕТИЛ-5'-R-1',2',4'-ТРИАЗОЛИЙ-1'-ИЛ)-R₁]-3-НИТРО-4-МЕТИЛ-5-R-1,2,4-ТРИАЗОЛИЕВ

А.Г. Суханова, Г.Т. Суханов, Ю.В. Филиппова

Учреждение Российской академии наук Институт проблем химико-энергетических технологий Сибирского отделения РАН

В работе приводится сравнительный анализ спектральных характеристик исходных 1- R_1 -3-нитро-5-R-1,2,4-триазолов, 3-нитро-1-[1'-(3'-нитро-5'-R-1',2',4'-триазол-1'-ил)- R_1]-3-нитро-5-R-1,2,4-триазолов и продуктов их кватернизации — алкилсульфатов, перхлоратов, динитрамидов 1- R_1 -3-нитро-4- R_2 -5-R-1,2,4-триазолиев и 3-нитро-1-[1'-(3'-нитро-4'-метил-5'-R-1',2',4'-триазолий-1'-ил)- R_1]-3-нитро-4-метил-5-R-1,2,4-триазолиев.

Ключевые слова: нитротриазолиевые соли, структура, спектроскопия.

ВВЕДЕНИЕ

Нитротриазолиевые соли (НТС) - это новый тип ионных материалов, в том числе содержащие энергетические анионы динитрамида (ДНА) и хлорной кислоты (ХК). В настоящей работе представлен сравнительный анализ спектральных характеристик (ИК-. ЯМР 1 Н и 13 С) от количества и типа алкильных заместителей у циклических атомов азота гетероцикла и типа аниона (для HTC) 1-R₁-3-нитро-5-R-1,2,4-триазолов, 3-нитро-1-[1'-(3'нитро-5'-R-1',2',4'-триазол-1'-ил)-R₁]-3-нитро-5-R-1,2,4-триазо-лов, моно- и бициклических НТС. Объектами исследований выбраны моноциклические (рисунок 1) [1 - 3] и бициклические (схема 2) [4] НТС с различными анионами кислородсодержащих кислот (метилсульфат, этилсульфат, перхлорат, динитрамид) и различными алкильными заместителями у атома углерода C₅ и атомов азота N₁ и № гетероцикла.

 $\begin{array}{l} R=R_1=R_2=CH_3\; (\textbf{1}-\textbf{3});\; R_1=C_2H_5,\; R_2=CH_3,\; R=H\; (\textbf{4},\textbf{5});\\ R_1=R_2=CH_3,\; R=C_2H_5\; (\textbf{6}-\textbf{8});\; R_1=R_2=C_2H_5,\; R=H\; (\textbf{9}-\textbf{11});\; R_1=CH_3,\; R=R_2=C_2H_5\; (\textbf{12});\; R_1=i\text{-}Pr,\; R_2=CH_3,\; R=H\; (\textbf{13});\; R_1=i\text{-}Pr,\; R_2=C_2H_5,\; R=H\; (\textbf{14},\textbf{15});\; R_1=t\text{-}Bu,\; R_2=CH_3,\; R=H\; (\textbf{16});\; R_1=t\text{-}Bu,\; R_2=C_2H_5,\; R=H\; (\textbf{17},\textbf{18});\; R=R_1=CH_3,\; R_2=C_2H_5\; (\textbf{19});\; A=RSO_4,\; R=CH_3\; (\textbf{1},\textbf{4},\textbf{6});\; A=RSO_4,\; R=C_2H_5\; (\textbf{9},\textbf{14},\textbf{17});\; A=N(NO_2)_2\;\; (\textbf{2},\textbf{5},\textbf{8},\textbf{11}-\textbf{13},\textbf{15},\textbf{16},\textbf{18},\textbf{19});\; A=CIO_4\; (\textbf{3},\textbf{7},\textbf{10}). \end{array}$

Рисунок 1. Общая формула солей 3-нитро-1- R_1 -4- R_2 -5-R-1,2,4-триазолиев

Синтез НТС осуществлен рядом последовательных стадий. Первая из которых алкилирование 3-нитро-5-R-1,2,4-триазолов гаили диалкил-сульфатами логеналканами (ДАС) в присутствии щелочи [5] или третбутиловым спиртом в кислой среде [6]. Из 3нитро-5-R-1,2,4-триазолов выбраны первые представители гомологического ряда (R = H, CH_3 , C_2H_5). В результате алкили-рования получены соответствующие 1-R₁-3-нитро-5-R-1,2,4-триазолы с большой четверкой алкильных заместителей в положении № гетероцикла (CH₃, C₂H₅, *i*-Pr, *t*-Bu). Алкилированием 3нитро-5-R-1,2,4-триазолов 1,2-дибромэтаном, 1,3-дибромпропаном или 1-хлор-2-(2хлорэтокси)этаном в присутствии щелочи получены бициклические N_1, N_1' -замещенные производные [7, 8].

$$O_2N$$
 N
 O_2
 O_3
 O_4
 O_4
 O_5
 O_5
 O_5
 O_7
 O_7
 O_8
 O_8

 $R_1 = (CH_2)_2 - O - (CH_2)_2$: R = H(20 - 22), $R = CH_3(23 - 25)$; $A^- = CH_3$ $SO_4(20, 23)$, $A^- = N(NO_2)_2$ (21, 24), $A^- = CIO_4$ (22, 25); $R_1 = -(CH_2)_2 -$: R = H(26 - 28), $R = CH_3(29 - 31)$, $A^- = CH_3SO_4$ (26, 29), $A^- = N(NO_2)_2$ (27, 30), $A^- = CIO_4$ (28, 31); $R_1 = -(CH_2)_3 -$: R = H(32 - 34), $A^- = CH_3SO_4$ (32), $A^- = N(NO_2)_2$ (33), $A^- = CIO_4$ (34).

Рисунок 2. Общая формула солей 3-нитро-1-[1'-(3'-нитро-4'-метил-5'-R-1',2',4'-триазолий-1'-ил)- R_1]-3-нитро-4-метил-5-R-1,2,4-триазолиев

Селективная кватернизация $1-R_1-3-$ нитро-5-R-1,2,4-триазолов или 3-нитро-1-[1'-(3'-нитро-5'-R-1',2',4'-триазолов наиболее эффективными кватернизующими агентами (диметил- или диэтилсульфатом) в положение N_4

гетероцикла приводит к образованию соответствующих алкилсульфатов 1- R_1 -3-нитро-4- R_2 -5- R_1 -3,4-триазолиев (R_2 = CH_3 , C_2H_5) или 3-нитро-1-[1'-(3'-нитро-4'- R_2 -5'- R_1 -1',2',4'-триазолий-1'-ил)- R_1 -3-нитро-4- R_2 -5- R_1 -3,4-триазолиев (R_2 = CH_3).

Анионным обменом алкилсульфатов НТС с аммониевыми или калиевыми солями хлорной кислоты или динитрамида с высоким выходом получены соответствующие динитрамиды и перхлораты $1-R_1-3$ -нитро- $4-R_2-5-R_1$,2,4-триазолиев и 3-нитро-1-[1'-(3'-нитро-4'-метил-5'-R-1',2',4'-триазолий-<math>1'-ил)- R_1]-3-нитро-4-метил-5-R-1,2,4-триазолиев.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ΠMP^1H и $9MP^{13}C$ снимали на спектрометре «Bruker AM-400» с рабочей частотой 400.2 МГц в растворе $9MCO-d_6$, внутренний стандарт $9MCO-d_6$, ИК спектры — на приборе «PERKIN-ELMER» в таблетке с $9MCO-d_6$ кВг.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В качественном анализе НТС полезна колебательная спектроскопия. Анионы синтезированных НТС проявляются в ИК-спектрах в характерной для каждого из них области поглощения (таблицы 1 и 2). Алкилсульфаты и перхлораты проявляются в спектрах интенсивными уширенными полосами в областях, соответственно, $1225 \div 1235 \text{ см}^{-1}$ и $1080 \div 119 \text{ см}^{-1}$ [9], анион динитрамида имеет интенсивные полосы в ИК-спектрах в пределах $1513 \div 1530 \text{ см}^{-1}$, $1171 \div 1195 \text{ см}^{-1}$, $999 \div 1013 \text{ см}^{-1}$ [9, 10].

В ИК-спектрах моно- и бициклических НТС (таблицы 1 и 2) присутствуют полосы поглошения нитрогруппы в области синфазных 1325 ÷ 1345 см⁻¹ и симметричных валентных антифазных колебаний 1514 ÷ 1565 см-1, наиболее характеристичные по частоте для 1-R₁-3-нитро-5-R-1,2,4-триазолов [5, 11, 12]. Но при сравнении исходных 1-R₁-алкил-3нитро-5-R-1,2,4-триазолов и полученных из них НТС наблюдается смещение полос поглощения в высокочастотную область. Наибольшее смещение отмечено на примере синфазных колебаний нитрогруппы. Например, синфазные колебания нитрогруппы 1-R₁алкил-3-нитро-5-R-1,2,4-триазолов $=R_1=CH_3-35$; R =H: $R_1=C_2H_5-36$; $R_1=iPr-$ **37**), соответственно 1312 см⁻¹, 1305 см⁻¹ и 1305 см⁻¹, а для полученных из них солей 1335 ÷ 1353 см⁻¹ (соли **1 – 3, 19**, полученные из триазола **35**), 1313 ÷ 1336 см⁻¹ (соли **4, 5**, **9**

11, полученные из триазола 36) и 1322 ÷ 1335 см⁻¹ (соли **13 – 15**, полученные из триазола 37). Аналогичная картина наблюдается и на бициклических производных. Синфазные колебания нитрогруппы для исходных N_1, N_1' замещенных производных находятся в области N_1,N_1' -этилен- (1310 ÷ 1315 см $^{-1}$), N_1,N_1' -пропилен- (1306 см $^{-1}$) и N_1,N_1' -этоксиэтилен-(1309 ÷ 1310 см⁻¹), а у полученных из них солей в области, соответственно 1338 ÷ 1345 cm^{-1} , 1326 ÷ 1334 cm^{-1} и 1336 ÷ 1342 cm^{-1} . Otличительной особенностью НТС является то, что в полосе антифазных валентных колебаний нитрогруппы солей 3-нитро- $1-R_1-4-R_2-5-R-$ 1,2,4-триазолиев и 3-нитро-1-[1'-(3'-нитро-4'метил-5'-R-1',2',4'-триазолий-1'-ил)-R₁]-3нитро-4-метил-5-R-1,2,4-триазолиев появляется дополнительное плечо в области 1563 ÷ 1600 см⁻¹ [2], что, видимо, связано с частичным выходом нитрогруппы из плоскости кольца. В целом синфазное и антифазное поглощение нитрогруппы моно- и бициклических НТС мало зависят от типа аниона.

Синфазные колебания нитрогруппы синтезированных моно- и бициклических НТС чувствительны к структуре и местоположению заместителей у циклических атомов азота гетероцикла. Для солей 3-нитро-1-R₁-4-R₂-5-R-1,2,4-триазолиев синфазные колебания нитрогруппы зависят от типа алкильного заместителя у циклических атомов азота N₁. Для N₁-алкил-N₄-метилзамещенных HTC **1** -8, 13, 16 синфазные колебания нитрогруппы находятся в интервале 1313 ÷ 1345 см⁻¹. В целом с увеличением длины цепи алкильного заместителя в ряду $-CH_3$, $-C_2H_5$, -i- C_3H_7 , -t-С₄Н₉ они смещаются в низкочастотную область. Если для №-метил-3-нитро-4-метил-5-R-1,2,4-триазолиевых солей 1 - 3, 6 - 8 синфазные колебания нитрогруппы находятся в области 1335 ÷ 1345 см $^{-1}$, то в N₁-этил- **4, 5**, N_1 -изопропил- **13**, N_1 -третбутил- **16** 3-нитро-4метил-5-R-1,2,4-триазолиевых солях смещаются в область меньших частот 1313 ÷ 1336 см⁻¹. Для бициклических нитротриазолиевых солей синфазные колебания нитрогруппы с N_1, N_1' -этиленовым мостиком **26 – 31** находятся в интервале 1335 ÷ 1342 см⁻¹, N_1, N_1' -этоксиэтильным мостиком **20 – 25**, в интервале 1335 ÷ 1345 см⁻¹, что соответствудля области, аналогичной метилзамещенных 3-нитро-4-метил-5-R-1,2,4триазолиевых солей **1 – 3, 6 – 8**, а для N₁,N₁'пропиленовых производных 32 - 34 - в области 1326 см⁻¹, аналогичной для N₁-этил- **4, 5** и N₁-изопропилзамещенных **13** 3-нитро-4метил-5-R-1,2,4-триазолиевых солей.

Наиболее характерной отличительной исходных 1-R₁-3-нитро-5-Rособенностью 1,2,4-триазолов и их кватернизованных аналогов является существенное смещение резонанса протонов заместителей при атоме углерода С₅ гетероцикла, что происходит вследствие приобретения гетероциклом положительного заряда и уменьшения магнитного экранирования протонов. Наиболее существенные отличия в протонных спектрах N₁-алкил-3-нитро-5-R-1,2,4исходных триазолов и НТС на их основе связаны с резонансом кольцевого протона С5. При образовании катионов нитротриазолиев по сравнению с исходными нитротриазолами повышается кислотность протона при атоме углерода С5 гетероцикла. В результате в спектрах ЯМР ¹Н протон при этом атоме углерода 3нитро-1-R₁-4-R₂-5-R-1,2,4-триазолиев сравнению с исходными 1-R₁-3-нитро-5-R-1,2,4-триазолами значительно смещается на 1,34 ÷ 1,82 м.д. в область слабых полей. Так, если в 1-R₁-3-нитро-5-R-1,2,4-триазолах (с заместителями у атома азота N_1 в ряду $R_1 = CH_3$, $-C_2H_5$, $-i-C_3H_7$, $-t-C_4H_9$) personanc C_5H протонов проявляется синглетом в области $8,67 \div 8,95$ м.д. [5, 6, 13], то в продуктах их кватернизации ДАС, соответствующих солях 3-нитро-1- R_1 -4- R_2 -5-R-1,2,4-триазолиев **4**, **5**, 9, 11, 13 - 18, находится в области 10,31 ÷

10,49 м.д. Синглет протона при атоме углерода C₅ гетероцикла 3-нитро-1-R₁-4-R₂-1,2,4триазолиевых солей не зависит от типа аниона (в ряду алкилсульфат, динитрамид, перхлорат) и незначительно зависит от заместителей у атомов азота № и №. С увеличением заместителей длины цепи 3-нитро-1-R₁-4-R₂-1,2,4моноциклических триазолиевых солей 4, 5, 9, 11, 13 – 18 сигнал кольцевого протона смещается в область слабых полей 10,43 ÷ 10,49 м.д., по сравнению с N₁,N₁-бициклическими солями 3-нитро-1-[1'-(3'-нитро-4'-метил-1',2',4'-триазолий-1'ил)- R_1]-3-нитро-4-метил-1,2,4-триазолиев (**20 – 34)** – 10,29 ÷ 10,41 м.д.

Заместители у атома углерода C_5 гетероцикла всех HTC 1- R_1 -3-нитро-5-R-4- R_2 -1,2,4-триазолиев и 3-нитро-1-[1'-(3'-нитро-4'-метил-5'R-1',2',4'-триазолий-1'-ил)- R_1]-3-нитро-4-метил-5-R-1,2,4-триазолиев проявляются в достаточно узком спектральном интервале в виде: характерного синглета при R = H в области 10,31 ÷ 10,49 м.д. (рисунок 3); синглета при R = CH_3 для моноциклических в области 2,86 ÷ 2,92 м.д., для бициклических в области 2,80 ÷ 3,10 м.д.; квадруплета и триплета при R = C_2H_5 , соответственно, в области 3,31 ÷ 3,35 м.д. и 1,25 ÷ 1,28 м.д (рисунок 4).

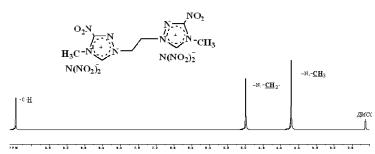


Рисунок 3. Типичный ЯМР¹H-спектр для бициклических солей на примере динитрамида **27**

Резонанс протонов метильных групп при атоме углерода C_5 солей **1 – 3, 19, 60, 31** и **23, 23, 24** и протонов C_2H_5 -группы солей **6 – 8, 12**, связанных с кольцевым атомом углерода C_5 в исследуемом ряду анионов (таблицы 1 и 2), незначительно зависит от его типа.

Алкилирующим агентом для кватернизации 3-нитро-5-R-1,2,4-триазолов преимущественно выбран диметилсульфат, поэтому заместителем у атома азота N_4 в образующихся солях 3-нитро-1- R_1 -4- R_2 -5-R-1,2,4-триазолиев у всех в представленной работе солей (кроме солей 1-алкил-4-этил-3-нитро-1,2,4-триазолиев 10, 11, 12, 14, 15, 17 — 19 квляется CH_3 -группа. В солях 10, 11, 12, 14, 15, 17 — 19 сигналы протонов этильной груп-

пы проявляются соответствующим квадруплетом $N_4\text{-}CH_2$ группы при $4,53 \div 4,56$ м.д. и триплетом для CH_3 группы при $1,42 \div 1,57$ м.д.

Сигналы протонов метильной группы, связанной с атомом азота N_4 , проявляются в спектрах ЯМР 1 Н по одному для каждого вещества характерному синглету, не зависят от аниона и для алкилсульфатов, перхлоратов и динитрамидов $1-R_1-3$ -нитро- $4-R_2-5-R-1,2,4$ -триазолиев 1-8, 11, 13, 16 и 3-нитро-1-[1'-(3'-нитро-4'-метил-<math>5'-R-1',2',4'-триазолиев 1-8, 11, 12, 13, 13, 13, 14, 13, 14, 14, 14, 15,

типа заместителя у атома азота N_1 и в ряду N_1 -метил- (2, 8, 13, 16), N_1,N_1 '-этилен- (27, 30), N_1,N_1 '-пропилен- (33), N_1,N_1 '-этоксиэтилен- (21, 24) как для 1- R_1 -3-нитро-4- R_2 -5- R_1 2,4-триазолиевых солей, так и для 3-нитро-1-[1'-

(3'-нитро-4'-метил-5'-R-1',2',4'-триазолий-1'-ил)-R $_1$]-3-нитро-4-метил-5-R-1,2,4-триазолиевых солей и находятся в интервале 4,05 \div 4,24 м.д.

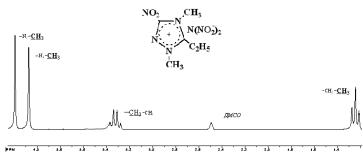


Рисунок 4. Типичный ЯМР¹Н-спектр для моноциклических солей на примере динитрамида 8

Заместители у атома азота N_1 проявляются в виде сигналов протонов соответствующих типу заместителей. Большая четверка алкильных заместителей у атома азота N_1 моноциклических НТС проявляется соответственно в виде: синглета метильной группы при $4,12 \div 4,20$ м.д для солей с 1-3, 6-8, 12, 19; триплета и квадруплета этильной группы соответственно при $1,48 \div 1,56$ м.д. и $4,48 \div 4,60$ м.д. для солей с 4, 5, 10, 11; мультиплета и дублета изопропильной группы соответственно при $4,96 \div 4,97$ м.д. и $1,56 \div 1,57$ м.д., для солей 13-15, и синглета — третбутильной группы при $1,66 \div 1,68$ м.д. для солей 16-18.

Тот факт, что в ЯМР¹Н спектрах 3-нитро-1-[1'-(3'-нитро-4'-метил-5'-R-1',2',4'-триазолий-1'-ил)алкил]-3-нитро-4-метил-5-R-1,2,4триазолиевых солей, соединенных алкиленовым мостиком 26 - 33 (например, рисунок 3) и 3-нитро-1-{[(3-нитро-4-метил-1-H-1,2,4триазолий-1-ил)этокси]этил}4-метил-1-Н-1,2,4-триазолиевых солей с простой эфирной связью 20 - 25 присутствуют по одному синглету (26 - 33) или триплету (20 - 25) протонов СН₂- группы, связанной с циклическим атомом азота N₁, свидетельствует о симметричности структуры биядерных НТС и сохранению неизменным в ходе процесса кватернизации и ионного обмена положений соответствующих заместителей у атомов азота N_1,N_1' , также как у исходных биядерных N_1,N_1' 3-нитро-5-R-1,2,4моно-замещенных триазолах.

В спектрах $\rm 9MP^{13}C$ алкилсульфатов, перхлоратов и динитрамидов с катионом 1- $\rm R_1$ -3-нитро-4- $\rm R_2$ -5- $\rm R$ -1,2,4-триазолиев и 3-нитро-1-[1'-(3'-нитро-4'-метил-5'- $\rm R$ -1',2',4'-триазолий-1'-ил)- $\rm R_1$ -3-нитро-4-метил-5- $\rm R$ -1,2,4-триазолиев (таблицы 1 и 2) регистрируются характерные сигналы атомов углерода

гетероцикла – углерода С₃ при нитрогруппе и кольцевого углерода С5-R. Причем, если сигнал углерода С₃ гетероцикла, связанный с нитрогруппой, во всех представленных монои бициклических НТС мало зависит от типа и положения алкильных заместителей и локализуется в узком диапазоне при 150,38 ÷ 151,82 м.д., характерном для солевых нитротриазо-лиевых структур [2], то на резонанс углерода С5 существенным образом влияет заместитель при этом атоме. Замена протона при С₅ на алкильную группу приводит к значительному смещению резонанса этого атома углерода в спектрах $\text{ЯМР}^{13}\text{С}$ на 7,61 ÷ 14,09 м.д. в область слабых полей. Так, если для солей с катионами 1-R₁-3-нитро-4-R₂-5-R-1.2.4-триазолия (R =H, соли 10, 11, 13, 15, 16, **18**) и 3-нитро-1-[1'-(3'-нитро-4'-метил-5'-R-1',2',4'-триазолий-1'-ил)-R₁]-3-нитро-4-метил-5-R-1,2,4-триазолия (R =H, соли 20 - 22, 26 -**28, 32 – 34**) сигнал циклического углерода C₅ находится при 145,03 ÷ 148,57 м.д., то для солей (R = CH₃ соли 1 - 3, 19, 29, 30, 31) смещается до 156,18 ÷ 157,50 м.д., а для производных (R = C_2H_5 соли 6 – 8, 12) сигналы углерода С₅ смещаются, соответственно, до 158.64 ÷ 159,12 м.д.

В спектрах ЯМР 13 С алкилсульфатов, перхлоратов и динитрамидов на основе катионов 1- R_1 -3-нитро-4- R_2 -5-R-1,2,4-триазолиев и 3-нитро-1-[1'-[3'-нитро-4'-метил-5'-R-1',2',4'-триазолий-1'-ил)- R_1 -3-нитро-4-метил-5-R-1,2,4-триазолиев (таблицы 1 и 2) присутствуют соответствующие сигналы углерода, связанные с атомами азота N_4 (метильные и этильные группы). При C_5 =H сигнал углерода метильной группы, связанный с атомом азота N_4 , практически не зависит от заместителя R_1 , как для 1- R_1 -3-нитро-4- R_2 -1,2,4-триазолиевых солей, так и для 3-нитро-1-[1'-[3'-нитро-4'-метил-1',2',4'-триазо-лий-1'-

ил)- R_1]-3-нитро-4-метил-1,2,4-триазолиевых солей и в ряду N_1 -изопропил- 13, N_1 -третбутил- 16, N_1,N_1 '-этилен- 26 — 28, N_1,N_1 '-пропилен- 32 — 34, N_1,N_1 '-этоксиэтилен- 21, 22 находятся в узком спектральном интервале 37,46 \div 37,77 м.д. При замене протона при C_5 на метильную группу в солях 1 — 3, 29 — 31 диапазон резонанса углерода N_4 - CH_3 смещается на 1,56 \div 2,10 м.д. в область сильных полей и находится в интервале 35,67 \div 35,90 м.д. Кроме того, в ЯМР 13 С спектрах проявляются все имеющиеся в структурах НТС атомы углерода алкильных заместителей у атома азота N_1 , атомы углерода алкиленовых и этоксиэтиленовых заместителей (таблицы 1 и 2).

Структура полученных соединений также подтверждена хорошей сходимостью элементного анализа, причем характерной осо-

бенностью является отсутствие серы в составе солей хлорной кислоты и динитрамида, что свидетельствует о количественном проведении анионного обмена.

Проведен рентгеноструктурный анализ типичного представителя нитротриазолиевых солей – динитрамида 1,4,5-триметил-3-нитро-1.2.4-триазолия 2. В результате надежно установлено направление атаки электрофильного агента при кватернизации 1,5-диметил-3-нитро-1,2,4-триазола в положение № гетероцикла [14]. На основании проведенного рентгеноструктурного анализа и спектроскопии ЯМР надежно установлены структурные параметры динитрамида 1,4,5-триметил-3нитро1,2,4-триазолия 2. Это позволило в дальнейшем использовать спектроскопию для установления структуры различных НТС.

Таблица 1 Спектральные характеристики алкилсульфатов, перхлоратов и динитрамидов 1-R₁-3-нитро-4-R₂-5-R-1,2,4-триазолиев

Шифр		NO ₂	N	₹ ¹	ЯМР ¹ Н, ДМСО-d ₆ , м.д.	ЯМР ¹³ С, ДМСО-d _{6,} м.д.	ИК-спектр, λ, см ⁻¹
P	R	R ₁	R ₂	Α¯			
1	CH ₃	CH₃	CH₃	CH₃SO₄	2,86(c.,3H,C-CH ₃) 4,03(c.,3H,N ₄ -CH ₃) 4,12(c.,3H,N ₁ -CH ₃)	10,43 (C- <u>C</u> H ₃) 35,68 (N ₄ - <u>C</u> H ₃) 38,83 (N ₁ - <u>C</u> H ₃) 150,38(<u>C</u> ₃ -NO ₂) 156,29 (<u>C</u> ₅ -CH ₃)	катион NO₂: 1589;1547;1336; 867; 630 анион CH₃SO₄: 1225 уш.
2	CH ₃	CH₃	CH₃	N(NO ₂) ₂	2,89(c.,3H,C-CH ₃) 4,05(c.,3H,N ₄ -CH ₃) 4,15(c.,3H,N ₁ -CH ₃)	10,67 (C-CH ₃) 35,90 (N ₄ -CH ₃) 38,58 (N ₁ -CH ₃) 150,38(C ₃ -NO ₂) 156,47 (C ₅ -CH ₃)	катион NO ₂ : 1588;1555;1336; 858; 638 анион N(NO ₂) ₂ : 999; 1176; 1518
3	CH ₃	CH ₃	CH₃	CIO ₄	2,88(c.,3H,C-CH ₃) 4,05(c.,3H,N ₄ -CH ₃) 4,15(c.,3H,N ₁ -CH ₃)	$\begin{array}{c} 10,38(C-\underline{C}H_3) \\ 35,67(N_4-\underline{C}H_3) \\ 38,93(N_1-\underline{C}H_3) \\ 150,38(\underline{C}_3-NO_2) \\ 156,18(\underline{C}_5-CH_3) \end{array}$	катион NO ₂ : 1587;1550;1335; 867; 625 анион ClO ₄ : 1100 уш.
4	Н	C ₂ H ₅	CH₃	CH₃ SO₄	10,35 (c. 1H, C ₅ - <u>H</u>) 4,11(c.,3H,N-CH ₃) 4,52(κΒ,2H,C <u>H</u> ₂ -CH ₃) 1,49(τ.,3H,CH ₂ -C <u>H</u> ₃) 3,34(c., 3H, CH ₃ SO ₄)	-	катион NO ₂ : 1594;1566;1313; 849; 630 анион CH ₃ SO ₄ : 1243 уш.
5	Н	C ₂ H ₅	CH₃	N(NO ₂) ₂	10,31 (с. 1H, С ₅ - <u>H)</u> 4,11(с.,3H,N-СН ₃) 4,48(кв,3H,СН ₂ -С <u>Н</u> ₃) 1,48 (т.,2H,С <u>Н</u> ₂ -СН ₃)	-	катион NO_2 : 1591;1565;1336;850; 665 анион $N(NO_2)_2$: 1006;1172;1523

СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ СОЛЕЙ ТРИАЗОЛИЕВ

6	C ₂ H ₅	CH ₃	CH ₃	CH ₃ SO ₄	4,13(с., 3H, N ₁ -С <u>Н</u> ₃) 4,09(с., 3H, N ₄ -С <u>Н</u> ₃) 6,23(с., 3H,СН ₃ -SO ₄) 3,31(кв,2H,С <u>Н</u> ₂ -СН ₃) 1,25(т., 3H, СН ₂ -С <u>Н</u> ₃)	9,73(CH ₂ - <u>C</u> H ₃) 17,06(C ₅ - <u>C</u> H ₂) 35,61 (N ₄ - <u>C</u> H ₃) 38,82 (N ₁ - <u>C</u> H ₃) 150,59 (<u>C</u> ₃ -NO ₂) 158,73 (<u>C</u> ₅ -CH ₂)	катион NO₂: 1585;1550;1345; 875; 635 анион CH₃ SO₄: 1230 уш.
7	C ₂ H ₅	CH₃	CH₃	CIO ₄	4,20(с., 3H, N ₁ -С <u>Н</u> ₃) 4,07(с., 3H, N ₄ -С <u>Н</u> ₃) 3,31(кв,2H,С <u>Н</u> ₂ -СН ₃) 1,25(т, 3H, СН ₂ -С <u>Н</u> ₃)	9,71(CH ₂ -CH ₃) 16,87(C ₅ -CH ₂) 35,46 (N ₄ -CH ₃) 38,83 (N ₁ -CH ₃) 150,73(C ₃ -NO ₂) 158,64(C ₅ -CH ₂)	катион NO ₂ : 1585;1545;1340; 870; 625 анион ClO ₄ : 1095 уш.
8	C₂H₅	CH₃	CH₃	N(NO ₂) ₂	4,19(с., 3H, N ₁ -С <u>Н</u> ₃) 4,07(с., 3H, N ₄ -С <u>Н</u> ₃) 3,35(кв,2H,С <u>Н</u> ₂ -СН ₃) 1,28(т.,3H,СН ₂ -С <u>Н</u> ₃)	$\begin{array}{c} 9,70(CH_2\text{-}\underline{C}H_3) \\ 16,91(C_5\text{-}\underline{C}H_2) \\ 35,46 \ (N_4\text{-}\underline{C}H_3) \\ 38,86 \ (N_1\text{-}\underline{C}H_3) \\ 150,73(\underline{C}_3\text{-}NO_2) \\ 158,67(\underline{C}_5\text{-}CH_2) \end{array}$	катион NO ₂ : 1580;1551;1340; 870; 620 анион N(NO ₂) ₂ : 1006;1179;1519
9	Н	C ₂ H ₅	C₂H₅	C₂H₅ SO₄	-	13,64(CH ₂ - <u>CH₃)</u> 46,82 (N-CH ₂) 13,45(CH ₂ - <u>CH₃)</u> 49,12(N-CH ₂) 15,17(<u>C</u> H ₃ CH ₂ SO ₄) 61,62(CH ₃ <u>C</u> H ₂ SO ₄) 145,89(<u>C</u> ₅ -H) 150,97(<u>C</u> ₃ -NO ₂)	катион NO₂: 1588;1560;1325; 845; 625 анион С₂Н₅SO₄ 1225 уш.
10	Н	C ₂ H ₅	C₂H₅	ClO ₄	10,42(с., 1H, C-H) 1,52(т., 3H, CH ₃) 1,55(т.,3H, CH ₃) 4,53(кв., 2H, CH ₂) 4,57(кв., 2H, CH ₂)	13,36(CH ₂ - <u>C</u> H ₃) 13,62(CH ₂ - <u>C</u> H ₃) 46,72(N ₄ - <u>C</u> H ₂) 49,09(N ₁ - <u>C</u> H ₂) 145,78(<u>C</u> ₅ -H) 150,92(<u>C</u> ₃ -NO ₂)	катион NO ₂ : 1590;1562;1325; 850; 625 анион CIO ₄ : 1080
11	Н	C₂H₅	C₂H₅	N(NO ₂) ₂	10,45(с.,1H,С ₅ - <u>H</u>) 4,53(кв,2H,С <u>H</u> ₂ -CH ₃) 1,54 (т, 3H,CH ₂ -C <u>H</u> ₃) 4,60(кв,2H, С <u>H</u> ₂ -CH ₃) 1,57(т,3H, CH ₂ -C <u>H</u> ₃)	13,67(CH_2 - $\underline{C}H_3$) 14,00(CH_2 - $\underline{C}H_3$) 47,18(N - $\underline{C}H_2$) 49,59(N - $\underline{C}H_2$) 146,23(\underline{C}_5 - H) 151,27(\underline{C}_3 - NO_2)	-
12	C₂H₅	CH₃	C₂H₅	N(NO ₂) ₂	3,35(кв,2H,С <u>H</u> ₂ -CH ₃) 1,29 (т., 3H, CH ₂ -C <u>H</u> ₃) 4,20 (с., 3H, N ₁ -C <u>H</u> ₃) 4,56(кв,2H,С <u>H</u> ₂ -CH ₃) 1,46 (т., 3H, CH ₂ -C <u>H</u> ₃)	10,88(C ₅ - <u>C</u> H ₂ -CH ₃) 150,75(<u>C₃</u> -NO ₂) 14,56(C ₅ -CH ₂ - <u>C</u> H ₃) 17,36 (CH ₂ - <u>C</u> H ₃) 39,30 (N-CH ₂) 45,39 (N-CH ₃) 159,12(C ₅ -C ₂ H ₅)	катион NO ₂ : 1584;1545;1333; 867; 636 анион N(NO ₂) ₂ : 1020;1186;1524
13	Н	–HС СН ₃	CH₃	N(NO ₂) ₂	10,43 (с. 1H, C_5 - <u>H</u>) 4,14 (с., 3H, N_4 - C <u>H</u> ₃) 4,97 (м, 1H, C <u>H</u> -) 1,57 (д., 6H, -(C H ₃) ₂)	21,35 (-(CH ₃) ₂) 37,52 (N-CH ₃) 57,96 (N-CH) 147,19 (<u>C</u> ₅ -H) 151,53(<u>C</u> ₃ -NO ₂)	катион NO ₂ : 1564;1514;1328; 847; 627 анион N(NO ₂) ₂ : 1006;1184;1514
14	Н	−HC,CH ₃	C₂H₅	C ₂ H ₅ SO ₄	10,45 (с. 1H, С ₅ - <u>H</u>) 4,96(м,1H,N ₄ -C <u>H</u> -) 1,56(д,6H,-(CH ₃) ₂) 4,55(кв,2H,С <u>H</u> ₂ -CH ₃) 1,54(т.,3H,CH ₂ -C <u>H</u> ₃) 3,71(кв,3H,С <u>H</u> ₃ CH ₂ SO ₄) 1,10(т.,2H, CH ₃ C <u>H</u> ₂ SO ₄)	-	катион NO₂: 1585;1556;1335; 843; 635 анион С₂Н₅SO₄: 1217 уш.

СУХАНОВА А.Г., СУХАНОВ Г.Т., ФИЛИППОВА Ю.В.

15	Н	-HC CH ₃	C₂H₅	N(NO ₂) ₂	10,45 (с. 1H, С ₅ - <u>H</u>) 4,96(м,1H,N ₄ -C <u>H</u> -) 1,56(д,6H,-(CH ₃) ₂) 4,55(кв,2H,C <u>H</u> ₂ -CH ₃) 1,53(т.,3H,CH ₂ -C <u>H</u> ₃)	14,16 (CH ₂ - <u>C</u> H ₃) 21,49 (-(CH ₃) ₂) 43,73 (N-CH ₂) 57,93 (N-CH) 145,53 (<u>C</u> ₅ -H) 151,49(<u>C</u> ₃ -NO ₂)	катион NO ₂ : 1586;1561;1322;844; 619 анион N(NO ₂) ₂ : 1006;1188;1513
16	I	H ₃ C —C-CH ₃ CH ₃	CH₃	N(NO ₂) ₂	10,49(c. 1H, C ₅ - <u>H</u>) 4,12(c., 3H, N ₄ -C <u>H</u> ₃) 1,67(c., 9H, -(CH ₃) ₃)	28,13 (-(CH ₃) ₃) 37,46 (N- <u>C</u> H ₃) 66,15(N- <u>C</u> (CH ₃) ₃) 145,68 (<u>C</u> ₅ -H) 151,53 (<u>C</u> ₃ -NO ₂)	катион NO₂: 1563;1526;1331;850; 619 анион N(NO₂)₂: 1003;1195;1526
17	Н	H ₃ C — C-CH ₃ CH ₃	C₂H₅	C ₂ H ₅ SO ₄	10,46 (c. 1H, C ₅ - <u>H</u>) 4,56(κΒ,2H,C <u>H</u> ₂ -CH ₃) 1,57(τ.,3H,CH ₂ -C <u>H</u> ₃) 1,68(c.,9H,-(CH ₃) ₃) 3,72(κΒ.,3H,C <u>H</u> ₃ CH ₂ SO ₄) 1,10(τ.,2H, CH ₃ C <u>H</u> ₂ SO ₄)	-	катион NO₂: 1591;1560;1324; 847; 636 анион С₂Н₅SO₄: 1170 уш.
18	Н	H ₃ C — C-CH ₃ CH ₃	C₂H₅	N(NO ₂) ₂	10,44 (с. 1H, С ₅ - <u>H)</u> 4,53(кв,2H,С <u>H</u> ₂ -СH ₃) 1,54(т.,3H,СH ₂ -С <u>H</u> ₃) 1,66(с.,9H,-(СH ₃) ₃)	28,14 (-(CH ₃) ₃) 145,03 (<u>C</u> ₅ -H) 66,18(N- <u>C</u> (CH ₃) ₃) 151,29 (<u>C</u> ₃ -NO ₂) 14,28(CH ₂ - <u>C</u> H ₃) 47,12(N ₄ - <u>C</u> H ₂)	катион NO ₂ : 1588;1555;1337; 847; 635 анион N(NO ₂) ₂ : 1005;1182;1511
19	CH₃	CH₃	C₂H₅	N(NO ₂) ₂	2,92(с.,3H,C-CH ₃) 4,13(с.,3H,N-CH ₃) 4,56(кв,2H,C <u>H</u> ₂ -CH ₃) 1,42(т.,3H,CH ₂ -C <u>H</u> ₃)	10,61 (C-CH ₃) 39,27 (N ₁ -CH ₃) 156,35 (C ₅ -CH ₃), 150,60 (C ₃ -NO ₂) 13,66(CH ₂ -CH ₃) 45,38(N ₄ -CH ₂)	катион NO ₂ : 1586;1547;1353;865; 636 анион N(NO ₂) ₂ : 1008;1180;1511

Таблица 2 Спектральные характеристики метилсульфатов, перхлоратов и динитрамидов 3-нитро-1-[1'-(3'нитро-4'-метил-5'-R-1',2',4'-триазолий-1'-ил)-R₁]-3-нитро-4-метил-5-R-1,2,4-триазолиев

Ши фр	0 ₂ N N N N N N N N N N N N N N N N N N N		NO ₂ + N _{CH₃} R A	ЯМР ¹ Н, ДМСО-d ₆ , м.д.	ЯМР ¹³ С, ДМСО- d _{6,} м.д.	ИК-спектр, λ, см ⁻¹
20	Ξ	-(CH ₂) ₂ -O- (CH ₂) ₂ -	CH ₃ SO ₄	10,31(c.,1H,C-H) 4,16(c.,3H,N-CH ₃) 3,35(c,3H,CH ₃ -SO ₄) 4,71(τ.,2H,N-CH ₂) 3,89(τ.,2H,CH ₂ -O)	-	катион NO ₂ : 1580;1566;1341; 852; 611 анион CH ₃ SO ₄ : 1237 уш
21	Н	-(CH ₂) ₂ -O- (CH ₂) ₂ -	N(NO ₂) ₂	10,36(c.,1H,C-H) 4,17(c.,3H,N-CH ₃) 4,73(τ.,2H,N-CH ₂) 3,88(τ.,2H,CH ₂ -O)	$\begin{array}{c} 37,75(N_4-\underline{C}H_3) \\ 53,78(N_1-\underline{C}H_2) \\ 67,13(CH_2-O) \\ 147,55(\underline{C}_5-H) \\ 151,61(\underline{C}_3-NO_2) \end{array}$	катион NO ₂ : 1593;1568;1340; 847; 629 анион N(NO ₂) ₂ : 998; 1178; 1523
22	Н	-(CH ₂) ₂ -O- (CH ₂) ₂ -	CIO ₄	10,32(c.,1H,C-H) 4,16(c.,3H,N-CH ₃) 4,72(τ.,2H,N-CH ₂) 3,88(τ.,2H,CH ₂ -O)	$\begin{array}{c} 37,77(N_4-\underline{C}H_3) \\ 53,81(N_1-\underline{C}H_2) \\ 67,12(\underline{C}H_2-O) \\ 147,51(\underline{C}_5) \\ 151,82(\underline{C}_3) \end{array}$	катион NO₂: 1591;1563;1339; 853; 622 анион ClO₄: 1108 уш
23	C H₃	-(CH ₂) ₂ -O- (CH ₂) ₂ -	CH₃ SO₄	2,88(c.,3H,C-CH ₃) 4,01(c.,3H,N-CH ₃) 3,32(c,3H,CH ₃ -SO ₄) 4,69(τ.,2H,N-CH ₂) 3,77(τ.,2H,CH ₂ -O)	-	катион NO ₂ : 1593; 1553; 1342; 861;635 анион CH ₃ SO ₄ : 1226 уш

СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ СОЛЕЙ ТРИАЗОЛИЕВ

24	C H₃	-(CH ₂) ₂ -O- (CH ₂) ₂ -	N(NO ₂) ₂	3,10 (c., 3H, C-CH ₃) 4,90 (τ., 2H, N-CH ₂) 3,98 (τ., 2H, CH ₂ -O) 4,24(c., 3H, N-CH ₃)	-	катион NO ₂ : 1589;1568;1339; 859; 634 анион N(NO ₂) ₂ : 1009; 1178;1516
25	ΟÍ	-(CH ₂) ₂ -O- (CH ₂) ₂ -	CIO ₄	2,80(c.,3H,C-CH ₃) 3,93(c.,3H,N-CH ₃) 4,59(τ.,2H,N-CH ₂) 3,67(τ.,2H,CH ₂ -O)	-	катион NO₂: 1588;1554;1336; 910; 623 анион ClO₄: 1090
26	I	-CH ₂ -CH ₂ -	CH₃SO₄	10,35(c.,1H,C ₅ -H) 4,98(c.,2H,N ₁ -CH ₂) 4,14(c.,3H,N ₄ -CH ₃) 3,37(c.,3H,CH ₃ -SO ₄)	37,51(N ₄ - CH ₃) 48,82(N-CH ₂) 53,22(<u>C</u> H ₃ SO ₄) 148,45(<u>C</u> ₅ -H) 151,45(<u>C</u> ₃ -NO ₂)	катион NO₂: 1590;1560;1345; 855;610 анион CH₃SO₄: 1235 уш.
27	Н	-CH ₂ -CH ₂ -	N(NO ₂) ₂	4,17(c, 3H, N ₄ -CH ₃) 5,19(c,2H, N ₁ -CH ₂) 10,35 (c, 1H, C ₅ -H)	37,71 (N ₄ - CH ₃) 48,91 (N-CH ₂) 148,57 (<u>C</u> ₅ -H) 151,47 (<u>C</u> ₃ -NO ₂)	катион NO₂: 1600;1563;1340; 852; 625 анион N(NO₂)₂: 1005; 1175;1516
28	Н	-CH ₂ -CH ₂ -	CIO ₄	10,36 (c., 1H, C ₅ -H) 4,99(c.,2H,N ₁ -CH ₂) 4,14(c.,3H,N ₄ -CH ₃)	37,56(N ₄ - CH ₃) 48,77(N ₁ -CH ₂) 148,06(<u>C</u> ₅ -H) 151,43(<u>C</u> ₃ -NO ₂)	катион NO₂: 1567;1550;1342; 855; 622 анион ClO₄: 1090 уш.
29	C H₃	-CH ₂ -CH ₂ -	CH₃ SO₄	2,87(c.,3H,C-CH ₃) 5,15(c.,2H,N ₁ -CH ₂) 4,01(c.,3H,N ₄ -CH ₃) 3,35(c.,3H,CH ₃ -SO ₄)	10,71 (C-CH ₃) 35,84 (N- CH ₃) 48,21 (N-CH ₂) 150,88 (<u>C</u> ₃ -NO ₂) 157,57 (<u>C</u> ₅ -CH ₃)	катион NO₂: 1597;1557;1338; 860;635 анион CH₃SO₄: 1226 уш.
30	C H₃	-CH ₂ -CH ₂ -	N(NO ₂) ₂	2,96(c.,3H,C-CH ₃) 5,16(c.,2H,N ₁ -CH ₂) 4,08(c.,3H,N ₄ -CH ₃)	10,70 (C ₅ - <u>C</u> H ₃) 35,79 (N ₄ - CH ₃) 48,64 (N ₁ -CH ₂), 150,79 (<u>C</u> ₃ -NO ₂) 157,49 (<u>C</u> ₅ -CH ₃)	катион NO ₂ : 1590;1561;1341; 870; 632 анион, N(NO ₂) ₂ : 1513;1189;1013
31	C H₃	-CH ₂ -CH ₂ -	CIO ₄	2,95(c.,3H,C-CH ₃) 5,17(c.,2H,N-CH ₂) 4,06(c.,3H,N-CH ₃)	$\begin{array}{c} 10,67(\text{C-CH}_3) \\ 35,84(\text{N}_4\text{- CH}_3) \\ 48,51(\text{N}_1\text{-CH}_2) \\ 150,76(\underline{\text{C}}_3\text{-NO}_2) \\ 157,50\ (\underline{\text{C}}_5\text{-CH}_3) \end{array}$	-
32	Н	-CH ₂ -CH ₂ - CH ₂ -	CH ₃ SO ₄	10,29(c.,1H,C-H) 4,15(c.,3H,N-CH ₃) 3,34(c.,3H,CH ₃ SO ₄) 4,71(τ.,2H,N-CH ₂) 3,89(τ.,2H,CH ₂ -O)	37,70 (N- <u>C</u> H ₃) 53,41 (<u>C</u> H ₃ SO ₄) 53,88(N ₁ - <u>C</u> H ₂) 67,03(CH ₂ -O) 147,57 (<u>C</u> ₅ -H) 151,58 (<u>C</u> ₃ -NO ₂)	катион NO ₂ : 1600;1567;1334; 854; 623 анион CH ₃ SO ₄ : 1227 уш.
33	Н	-CH ₂ -CH ₂ - CH ₂ -	N(NO ₂) ₂	4,19(c,3H,N-CH ₃) 10,41(c,1H, CH) 2,59(м,2H, -CH ₂ -) 4,70(τ,2H,N-CH ₂ -)	27,54 (-CH ₂ -) 37,51 (N- CH ₃) 50,38 (N-CH ₂) 147,69 (<u>C</u> ₅ -H) 151,51 (<u>C</u> ₃ -NO ₂)	катион NO ₂ : 1593; 1565; 1326 анион N(NO ₂) ₂ : 1000; 1171;1515
34	Н	-CH ₂ -CH ₂ - CH ₂ -	CIO₄	-	-	катион NO₂: 1598;1567;1332; 853; 623 анион ClO₄: 1099 уш.

ЗАКЛЮЧЕНИЕ

Проведен комплексный сравнительный анализ спектральных характеристик исход-1-R₁-3-нитро-5-R-1,2,4-триазолов, нитро-1-[1'-(3'-нитро-5'-R-1',2',4'-триазол-1'ил)- R_1]-3-нитро-5-R-1,2,4-триазолов и продуктов их кватернизации - алкилсульфатов, перхлоратов, динитрамидов $1-R_1-3$ -нитро- $4-R_2-5$ -R-1,2,4-триазолиев и 3-нитро-1-[1'-(3'-нитро-4'-метил-5'-R-1',2',4'-триазолий-1'-ил)-R₁]-3нитро-4-метил-5-R-1,2,4-триазолиев. Наиболее характерной отличительной особенно-1-R₁-3-нитро-5-R-1,2,4стью исходных триазолов 3-нитро-1-[1'-(3'-нитро-5'-R-1',2',4'-триазол-1'-ил)-R₁]-3-нитро-5-R-1,2,4триазолов и их кватернизованных аналогов является: в ИК-спектрах в полосе антифазных валентных колебаний нитрогруппы появляется дополнительное плечо в области 1563 ÷ 1600 см⁻¹ и происходит существенное смещение полосы синфазных колебаний нитрогруппы в высокочастотную область; в ЯМР ¹Н спектрах наблюдается существенное смещение резонанса протонов заместителей при циклическом атоме углерода С5 гетероцикла в нитротриазолиевых солях в область слабых полей на 1,34 ÷ 1,82 м.д. С помощью спектроскопии ЯМР и рентгеноструктурного анализа на примере динитрамида 1,4,5-триметил-3нитро-1,2,4-триазолия надежно установлены структурные параметры солей 1-R₁-3-нитро-4- R_2 -5-R-1,2,4-триазолиев. Это позволило использовать ЯМР-спектроскопию для установления структуры различных нитротриазолиевых солей.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сакович Г.В., Жарков А.С., Суханов Г.Т., Лобанова А.А., Михайлов Ю.М., Суханова А.Г., Филиппова Ю.В. Заявка №2008142573/04 МКИ С07D249/14 (2006.01), С06В 25/34 (2006.01) решение о выдаче патента от 04.08.2010
- 2. Суханов Г.Т., Суханова А.Г., Шейков Ю.В. // Химия гетероциклических соединений. -2007. № 6. C. 927 934.
- 3. Sukhanov G.T., Sakovich G.V., Sukhanova A.G., Lobanova A.A. // Energetic Materials: In 38th Annual Conference of ICT 26-29 june 2007. Karlsruhe, 2007. P.44/1 8.
- 4. Суханов Г.Т., Сакович Г.В., Суханова А.Г. // Вестник КГТУ. Спец. выпуск. 2008. С. 55 59.
- 5. Суханов Г.Т., Лукин А.Ю. // Химия гетероциклических соединений. 2005. №7. С. 1020 1025.
- 6. Суханов Г.Т., Сакович Г.В., Суханова А.Г. // Химия гетероциклических соединений. 2008.– №11. С. 1680 1687.
- 7. Суханов Г.Т., Сакович Г.В., Суханова А.Г. // Вестник КГТУ спец. выпуск. Казань, 2008. С. 60 65.
- 8. Суханов Г.Т., Суханова А.Г., Филиппова Ю.В., Олещенко Ю.Ю. // Ползуновский вестник. № 3. 2010. С. 14 18.
- 9. G. Drake W., Hawkins T., Brand A., Hall L., McKay M., Vij A., Ismail I.. // Propellants, Explosives, Pyrotechnics. 2003. Vol. 28, Issue 4. P. 174 180.
- 10. Шляпочников В.А., Оленева Г.И., Черская Н.О. // Известия АН. Серия Химическая. 1995. №6. С. 927 934.
- 11. Певзнер М.С., Федорова Е.Я., Шохор И.Н., Багал Л.И. // Химия гетероциклических соединений, 1971.— С. 275.
- 12. Багал Л.И., Певзнер М.С., Фролов А.Н., Шелудякова Н.И. // Химия гетероциклических соединений. 1970. №2. С. 259 264.
- 13. Суханов Г.Т., Босов К.К., Суханова А.Г., Калмыков П.И. // Вестник КГТУ спец. выпуск. 2008. С. 93 98.
- 14. Григорьев Ю.В., Ляхов А.С., Григорьева И.М., Матулис Вад.Э., Элькинд П.Д., Ивашкевич О.А., Суханова А.Г. // Химия нитросоединений и родственных азот-кислородных систем: тез. докл. Всероссийской конференции 21-23 октября 2009 г. Москва, 2009. С. 119.