МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА АЦИЛИРОВАНИЯ ЛИГНОЦЕЛЛЮЛОЗНОГО МАТЕРИАЛА АЛИФАТИЧЕСКИМИ α-АМИНОКИСЛОТАМИ

- 3. Васильев В.П. Аналитическая химия. В 2 ч. Ч. 2. Физико-химические методы анализа: Учеб. Для химико-технол. спец. вузов. М.: Высш. шк., 1989. 384 с.
- 4. Мусько Н. П., Чемерис М. М. Химический анализ древесины: Методические указания по химии дре-

весины. Алт.гос.техн.ун-т им. И. И. Ползунова.-Барнаул: Изд-во АлтГТУ, 2004.- С. 36.

5. Казицина Л.А., Куплетская Н.Б. Применение УФ, ИК, ЯМР и масс-спектроскопии в органической химии. М.: Изд-во Московского университета, 1979, 240 с.

ВЛИЯНИЕ УСЛОВИЙ БАРОТЕРМИЧЕСКОЙ ОБРАБОТКИ НА ПОВЕДЕНИЕ ОСНОВНЫХ КОМПОНЕНТОВ СОЛОМЫ ПШЕНИЦЫ

Д.В. Ширяев, Н.П. Мусько, О.С. Беушева, В.С. Гурова, М.М. Чемерис

В данной работе приведены результаты изучения процесса баротермической обработ-ки соломы пшеницы. Изучено влияние давления и времени выдержки в реакторе на гидролитические процессы полисахаридов.

Ключевые слова: баротермическая обработка, солома пшеницы, лигноцеллюлозный материал

Рациональное природопользование это основа успешной экономики любого государства. В связи с этим большое количество исследований направлено на поиск методов использования вторичного сырья и отходов производства. Исследования кафедры ТППиЭ АлтГТУ также направлены на переработку отходов сельского хозяйства и лесотехнической промышленности. Одним из многотоннажных отходов сельского хозяйства является солома пшеницы, воспроизводство которой в Алтайском крае колеблется в пределах 7,5-8,5 млн. т/год.

В работе предложено использование предварительно модифицированной соломы пшеницы для изготовления плитных материалов без применения дополнительных связующих веществ. Данные исследования направлены на решение одновременно двух проблем, это расширение номенклатуры неконструкционных материалов и вовлечение в производство такого ценного целлюлозосодержащего сырья как солома пшеницы.

Для изготовления плитных материалов из соломы пшеницы без использования связующих веществ необходима предварительная модификация компонентов соломы пшеницы с целью перевода их в активное состояние. В качестве метода активации нами был выбран метод баротермической обработки [1,2]. Суть метода заключается в обработке растительной биомассы паром высокого давления в течение определенного промежутка времени и последующем резком сбросе давления. При этом одним из процессов, протекающих в лигноцеллюлозной массе, является гидролитическая деструкция

легкогидролизуемых полисахаридов, в результате которой образуются продукты, имеющие реакционноспособные группы, способные вступать в реакцию конденсации с ароматической составляющей, с образованием сложной сетки химических связей.

В данной работе проводили баротермическую обработку предварительно подготовленного сырья. Предварительная подготовка включала в себя следующие стадии: измельчение и пропитку водой. Измельчение проводилось ввиду конструкционных особенностей установки и более легкого проникновения молекул воды вглубь клеток соломы. Пропитка водой необходима для повышения коэффициента теплопроводности материала, вследствие чего достигется более быстрый и равномерный прогрев растительной биомассы.

В условиях баротермической обработки гемицеллюлозы соломы должны гидролизоваться до низкомолекулярных продуктов — пентозанов и гексозанов (редуцирующих веществ) по схеме, представленной на рисунке 1.

Также при баротермической обработке разрушается жесткая сетка лигнина, а быстрая декомпрессия препятствует ее повторному образованию, при этом образуется «псевдолигнин», характеризующийся малой молекулярной массой и высокой реакционной способностью. За счет высокой реакционной способности «псевдолигнин» по мнению многих ученых может заменить дорогостоящие фенолы в производстве древесных плит [3].

где R_1 =H, CH_2OH , COOH; R_2 = R_3 = OH

Рисунок 1. Процесс образования редуцирующих веществ

После баротермической обработки солому пшеницы экстрагировали водой, для удаления водорастворимых веществ и проводили анализ на их содержание в водном экстракте в пересчете на пентозаны и гексозаны (таблица 1).

Таблица 1
Влияние условий баротермической обработки на содержание редуцирующих веществ в экстракте

Условия	Содержание редуцирующих		
Температу- ра, ⁰ С	Время, мин	вешеств в экс- тракте, %	
160	5	4,50	
160	30	11,52	
220	5	11,26	
220	30	22,42	
Не модифицированная со- лома пшеницы		0	

Из полученных результатов видно, что водно-тепловая обработка соломы сопровождается гидролизом её углеводной части. Снижение содержания легкогидролизуемых полисахаридов в сухом остатке свидетельствует об их преимущественной деструкции. Увеличение продолжительности процесса баротермической обработки (от 5 до 30 минут) ведет к повышению количества легкогидролизумых полисахаридов, перешедших в водный экстракт. Повышение температуры так же способствует более полному переводу гемицеллюлоз в водорастворимое состояние.

Твердый остаток анализировался на содержание целлюлозы, лигнина и остаточных гемицеллюлоз (таблица 2).

Увеличение продолжительности и температуры процесса баротермической обработки ведет к уменьшению количества легкогидролизуемых полисахаридов в твердом остатке. Повышение температуры в баротермической установке при продолжительности процесса 5 минут, а также увеличение времени выдержки в реакторе при температуре 220 °C приводит к увеличению процентного содержания целлюлозы и лигнина в сухом остатке. Повышение температуры от 160 °C

до 220 °C в условиях 30 минут, и при увеличении продолжительности процесса от 5 до 30 минут при температуре 220 °C приводит к снижению содержания целлюлозы, что объясняется возможным гидролизом аморфной части целлюлозы, за счет чего наблюдается прирост редуцирующих веществ в водном экстракте.

Таблица 2

Содержание основных компонентов в сухом остатке в зависимости от условий баротермической обработки

Условия обработки		Содержание основных компонентов в сухом остатке, %		
		целлю-	лиг-	ЛГП
		лозы	нина	
Темпера-	Время,			
тура, ⁰С	МИН			
160	5	51,60	20,13	21,74
160	30	61,15	23,93	18,16
220	5	66,10	27,82	22,73
220	30	60,25	30,26	5,69
Не модифициро-		41,30	21,88	27,70
ванная солома				
пшеницы				

Содержание лигнина в сухом остатке увеличивается с возрастанием, как температуры, так и времени выдержки соломы в реакторе. Увеличение содержания лигнина может быть объяснено не только удалением гемицеллюлоз из растительной биомассы и как следствие возрастанием суммарной доли лигнина в сухом остатке, но и возможным участием продуктов деструкции гемицеллюлоз в процессах реполимеризации лигнина. И в данном случае речь скорее идет уже о так называемом «псевдолигнине».

Таким образом, при баротермической обработке соломы пшеницы, ее основные компоненты введут себя аналогично компонентам древесины. И как следствие данный вид обработки может быть рекомендован для производства плитных материалов без использования связующих веществ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гравитис Я.А. // Химия древесины. 1987. № 5. С. 3 21.
- 2. Эриньш П.П., Кулькевица И.Ф. // Химия древесины. 1990. № 4. С. 3 9.
- 3. Каллавус У.Л., Гравитис Я.А. / Тез. докл. 3-го науч. семинара «Превра-щение древесины при энзиматиче-ском и микробиологическом воздействиях». Рига, 1988. С. 236 245.