ИДЕНТИФИКАЦИЯ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ЛИГНОСУЛЬФОНАТОВ В РАСТВОРАХ

К.Н. Болатбаев, Т.Н. Луговицкая, А.В. Колосов

По результатам комплекса физико-химических исследований идентифицированы и выявлены закономерности ассоциативно-диссоциативных и кислотно-основных превращений технических, высоко- и низкомолекулярных лигносульфонатов. Установлено, что с увеличением молекулярных масс лигносульфонатов и их концентрации в растворах развиваются процессы ассоциации, которые интенсифицируются при увеличении кислотности, с последующей локализацией функциональных групп во внутренней структуре макрообразований, что затрудняет их диссоциацию, гидролиз и усиливает поверхностную активность.

ВВЕДЕНИЕ

В настоящее время технические лигносульфонаты (ТЛС), нашли широкое применение в качестве поверхностно-активных веществ, способных устранять экранирующий эффект расплавленной элементной серы и других нерастворимых генераций, образуемых по ходу гидрохимического окисления сульфидных минералов [1]. При этом опыт выщелачивания автоклавного цинксодержащих концентратов с использованием ТЛС выявил нестабильность и ухудшение их функциональных характеристик во времени при повышенных температурах и давлении кислорода. Ограниченность данных по свойствам растворов и закономерностям развития межфазных процессов с участием лигносульфонатов затрудняет их целенаправленный подбор. В настоящей работе приведены экспериментальные результаты идентификаисследования ассоциативнодиссоциативных, кислотно-основных, поверхностно-активных свойств растворов лигносульфонатов с различным молекулярномассовым распределением.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При проведении исследований использовали различающиеся по молекулярным массам фракции лигносульфонатов, выделенные препаративной ультрафильтрацией (1.5 МПа, 303-308 К) из промышленных сульфитных щелоков Соликамского, Краснокамского и одного из зарубежных («Ligno Tech», Norway) целлюлозно-бумажных предприятий. Средневзвешенные молекулярные массы (\bar{M}) лигносульфонатов в каждой из фракций определяли по методу седиментационного равновесия. Для дальнейших исследований использовали технический образец лигносульфоната ЛС№1 со средневзвешенной мо-

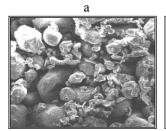
лекулярной массой 16900, а также два, фракционированных по молекулярным массам образца: низкомолекулярный - ЛС№2 (\bar{M} =9250) и высокомолекулярный - ЛС№3 (\bar{M} =46300).

Состав и структурные характеристики образцов устанавливали методами ИКспектроскопии (FTIR Spectrometr B-Rad FTS 175, диапазон волновых чисел $400-5000~{\rm cm}^{-1}$; спектральное разрешение $0.5~{\rm cm}^{-1}$, абсолютная погрешность $\pm~0.1~{\rm cm}^{-1}$), а также по результатам элементного анализа и электронной микроскопии (Hitachi S – 4800, SEM/EDX, 20кВ).

Элементный состав образцов представлен в таблице 1.

Таблица 1 Элементный анализ лигносульфонатов

Элемент	Образцы лигносульфонатов				
	№ 1	№ 2	№3		
C	33.9	29.0	41.7		
O	46.8	54.5	38.2		
S	9.5	5.5	5.4		
Na	5.7	6.6	0.8		
K	0.18	0.04	ı		
Mg	0.80	-	ı		
Ca	-	-	3.0		
Прочие	3.12	4.36	10.9		


На спектрограммах всех трех образцов проявляются характерные для лигносульфонатов полосы поглощения [2]: $3420~\rm cm^{-1}$, $1510\text{-}1610~\rm cm^{-1}$, $1039\text{-}1042~\rm cm^{-1}$, $1210\text{--}1190~\rm cm^{-1}$, $655~\rm cm^{-1}$ и $540\text{-}520\rm cm^{-1}$, $1675\text{-}1640~\rm cm^{-1}$, $1720\text{-}1715\rm cm^{-1}$.

По данным микроэлектронного сканирования образцов установлено, что высокомолекулярная разновидность лигносульфонатов образует сфероидальные и дискообразные агрегаты размерами до 200 нм. В низкомолекулярном (ЛС№2) и нерасфракционированном (ЛС№1) образцах преобладают анизо-

ИДЕНТИФИКАЦИЯ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ЛИГНОСУЛЬФОНАТОВ В РАСТВОРАХ

метричные по структуре микрообразования лигносульфонатов размером до 60 нм (рисунок 1).

Дополнительную информацию о функциональном составе устанавливали по результатам физико-химического и химического анализов растворов исследуемых образцов лигносульфонатов.

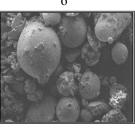


Рисунок 1. Электронные микрофотографии низкомолекулярных (а) и высокомолекулярных (б) лигносульфонатов

Наличие диссоциируемых и гидролизуемых групп в составе лигносульфонатов устанавливали по изменению (векторно и численно) характеристик рН и удельной электропроводности (æ, мкСм), а также диэлектрической проницаемости (ε, отн. ед.), как свежеприготовленных их растворов, так и выдержанных во времени (т, не менее 3 суток) при различных температурах (293-363 К). Количественные закономерности кислотно-основного превращения лигносульфонатов в исследуемых образцах устанавливали с использованием кондуктометрического и потенциометрического методов титрования стандартизированными (0.001-0.100 н.) растворами ряда кислот (HCI, HNO₃, H_2SO_4) и гидроксида натрия. Для обеспечения количественного превращения функциональных групп целенаправленно варьировали в растворах концентрации лигносульфонатов ($C_{\Pi C}$, 0.016-0.32 г/дм³), а также режимы (температура и продолжительность) экспозиции их совместно с титранта-

Характеристики поверхностного натяжения растворов лигносульфонатов ($C_{\Pi C}$, 0.001-1.50 г/дм³) определяли по методу капиллярного поднятия уровня жидкости [3].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Анализ удельной электропроводности (таблица 2) растворов с различным содержанием лигносульфонатов свидетельствует, что легкодиссоциируемые группы преобладают в составе низкомолекулярной разновидности ЛС№2.

По мере увеличения концентрации высокомолекулярной разновидности лигносульфонатов вплоть до 0.04-0.06 г/дм³ отмечается аномальное уменьшение электропроводности, как в свежеприготовленных, так и выдержанных во времени растворах. Аналогичный эффект в раснизкомолекулярной разновидности ЛС№2 проявлялся в более широком интервале концентраций (до 0.1 г/дм³). Рассчитанные значения степени диссоциации (а, %) лигносульфонатов в растворах исследуемых образцов представлены в таблице 2. В разбавленных растворах (< 0.016 г/дм^3) низкомолекулярной разновидности лигносульфонатов ЛС№2 на долю ионизированных форм приходится не менее 50%, что в 2 раза больше чем в растворах двух других разновидностей.

Таблица 2
Некоторые физико-химические характеристики растворов лигносульфонатов

Образец №1							
С, г/дм ³	æ, мкСм		α, %	σ·10 ⁻³ , Дж/м ²			
	I*	II*	I	I	II		
0.01	12.40	9.4	22.0	72	75		
0.04	11.00	10.3	6.4	81	80		
0.16	27.50	25.5	4.0	72	74		
0.64	82.00	77.0	3.0	62	64		
Образец №2							
0.01	17.0	21.5	90.5	66	68		
0.04	16.1	16.5	21.3	72	76		
0.16	30.0	32.5	10.0	70	75		
0.64	85.0	87.0	7.1	70	70		
Образец №3							
0.01	8.5	7.9	13.0	70	75		
0.04	9.3	7.5	4.5	60	69		
0.16	18.5	14.6	2.2	73	64		
0.64	40.0	44.0	1.2	67	67		

Степень диссоциации лигносульфонатов уменьшалась по мере увеличения молекулярных масс лигносульфонатов и в изоконцентрационных (0.01 г/дм³) по содержанию растворах ЛС№2, ЛС№1, ЛС№3 составила соответственно 91%, 22% и 13%. При повышенных концентрациях (свыше 0.04 г/дм^3) всех трех разновидностей сульфонатов α не превышает 20%.

В растворах высокомолекулярной разновидности ЛС№3 значения рН стабилизировались на уровне 4.6-4.8 во всем интервале вариаций их концентраций. В растворах лигносульфонатов с меньшей молекулярной массой (ЛС№1 и ЛС№2) выявлены концентрационные области, при которых наблюдались два экстремума в показателях рН; при $C_{\Pi C}$ =0.035-0.045 г/дм 3 - максимумы (рН=4.9-5.2), а при $C_{\Pi C}$ =0.11-0.13 г/дм 3 - минимумы (рН=4.4-4.7).

В более концентрированных растворах (свыше 0.12 г/дм 3) ЛС№1 и ЛС№2 наблюдалась тенденция к увеличению рН.

Увеличение температуры (до 323 К) и продолжительности экспозиции (до 24 часов) растворов благоприятствует количественному гидролизу низкомолекулярных сульфонатов, в том числе и в составе ЛС№1, (рисунок 2); существенный прирост показателей æ и рН фиксировали в их разбавленных растворах (до 0.04 г/дм³).

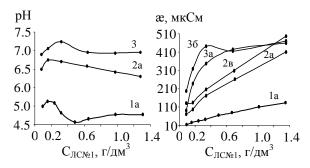


Рисунок 2. Влияние температуры и продолжительности обработки растворов лигносульфонатов на характеристики рН и удельной электропроводности: Т, К:1–293, 2-313, 3–323; т,час: а-0, б-1.5, в – 72

При аналогичных режимах обработки растворов высокомолекулярной разновидности (ЛС№3) показатели рН практически не изменялись, что согласуется с выводами, представленными в работе [4]. Авторы этой работы указывают, что сульфоновые группы в составе высокомолекулярных сульфонатов в меньшей степени подвержены процессам гидратации из-за формирования в растворах развитой трехмерной сетки; локализация кислотных групп во внутренней структуре ограничивает их доступность и создает стерические осложнения для развития процессов гидролиза.

Таким образом, в ряду исследуемых образцов гидролизу с образованием слабокислых групп в большей степени подвержены низкомолекулярные сульфонаты; в связи с обратимостью процессов гидролиза характеристики равновесного состояния определяются формируемой в растворах величиной рН. Наибольшую степень превращения отмечали в их разбавленных растворах ($C_{\Pi C} < 0.035-0.045 \ r/дм^3$).

В составе лигносульфонатов к числу активных, с позиций гидратирования, функциональных групп относят ионизированные и молекулярные формы эфиров серной кислоты (-OSO $_2$ O) и сульфонатов, производные

фенола и карбоксилатов, а также продукты кето-енольной таутомерии. Определение их количественных содержаний, в том числе и в продуктах гидратации, осложняется неоднозначностью изменения показателей активности (рК) каждой из групп в зависимости от молекулярно-массового состава, структурного и химического состава лигносульфонатов.

Кислотно-основные превращения лигносульфонатов являются обратимыми, что в режиме замедленного титрования, сопровождалось существенным драйвом скачка потенциала в обратном направлении. В связи с тем, что характеристики равновесного состояния лимитируются значениями рН, то степень кислотно-основного взаимодействия лигносульфонатов в растворах закономерно уменьшалась по мере увеличения концентрации лигносульфонатов.

Гидратацию лигносульфонатов лимитируют не только равновесные значения рН, но и стерические факторы, связанные с локализацией активных функциональных групп (фенольных, карбоксильных, сульфонатных) во внутренней структуре внутри- и межмолекулярных ассоциатов. Последнее характерно в большей степени для высокомолекулярных разновидностей лигносульфонатов. Образование ассоциатов в растворах усиливалось по мере уменьшения рН и увеличения количественных содержаний лигносульфонатов. Пространственная локализация функциональных групп во внутренней структуре ассоциированных лигносульфонатов затрудняет гидролиз и осложняет их количественное определение методами прямого титрования.

Вышеуказанные положения были подтверждены результатами диэлектрометрических исследований и, в первую очередь, в части формирования в кислых средах макромолекулярных ассоциатов лигносульфонатов. Ориентационную поляризацию, а также деформационную, связанную с наведением дипольного момента в низко- и высокомолекулярных лигносульфонатах, регистрировали по периодам заряда и разряда емкостного датчика заданным стабильным током в диапазоне частот переменного поля 1 - 125 кГц. Формирование ассоциатов, сопровождаемое сочленением ароматических ядер лигносульфонатов и одновременно локализацией в их внутренней структуре полярных функциональных групп, характеризуется изменением дипольных моментов, структуры и пространственной ориентации макрообразований в объеме растворителя. Значения диэлектрической постоянной (ε) в изоконцентрационных растворах лигносульфонатов

ИДЕНТИФИКАЦИЯ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ЛИГНОСУЛЬФОНАТОВ В РАСТВОРАХ

(рН=4) уменьшались по мере увеличения их молекулярных масс; причем существенное уменьшение ϵ наблюдалось уже при незначительном концентрировании растворов ЛС№1 и ЛС№3 (0.01-0.12 г/дм³). В присутствии низкомолекулярной разновидности ЛС№2 в указанном интервале концентраций отмечали противоположный характер в изменении ϵ (рисунок 3); прирост ϵ обусловлен накоплением в растворе легкополяризуемых продуктов гидролиза ЛС№2.

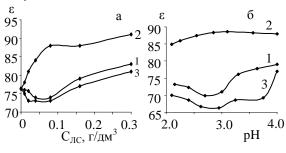


Рисунок 3. Влияние концентрации лигносульфонатов (а) и рН-среды (б) на диэлектрическую проницаемость растворов: 1–ЛС№1, 2–ЛС№2, 3–ЛС№3; б– Слс=0.16 г/дм³

Влияние рН-среды на формирование межмолекулярных ассоциатов лигносульфонатов в растворах исследуемых образцов иллюстрируют зависимости, представленные на рисунке 3 б. Существенное снижение є наблюдалось в растворах высокомолекулярной разновидности ЛС№3 при незначительном подкислении их серной кислотой (рН=3.7-3.8). Формирование ассоциатов в растворах нерасфракционированного образца ЛС№1 потребовало больших расходов кислоты (рН=2.8-3.0). В растворах же низкомолекулярной разновидности ЛС№2 вышеуказанные эффекты практически не проявлялись и в более кислых средах, вплоть до рН =2.

Таким образом, образование макромолекулярных структур и локализация активности функциональных групп присуще для высокомолекулярных сульфонатов и существенно усиливается в их концентрированных и подкисленных растворах.

Установленные закономерности физико-химического превращения лигносульфонатов в водных растворах, в том числе их индивидуальные характеристики, определяемые молекулярно-массовым составом, учитывались нами при прогнозировании и обосновании их поверхностно-активных свойств. Поверхностно-активные свойства лигносульфонатов, в сравнении с дифильными поверхностно-активными веществами, безусловно, будут определять характеристики (состав,

строение, пространственная ориентация) сформированных в результате сопутствующего превращения макроассоциатов и раствора в целом.

Способность высокомолекулярных разновидностей лигносульфонатов образовывать, особенно в кислых средах, макромолекулярные структуры с локализацией функциональных групп, очевидно, будет ограничивать подвижность и миграцию ассоциатов в объемной фазе, но при этом одновременно усиливать их лиофобность, и, как следствие, поверхностную активность в растворах.

Поверхностные натяжения растворов трех образцов лигносульфонатов, различающихся по молекулярно-массому распределению, представлены в таблице 2. По мере увеличения молекулярных масс лигносульфонатов поверхностное натяжение их растворов уменьшается, что согласуется с уменьшением в этом же ряду диссоциативных и гидролитических превращений и преимущественным концентрированием менее гидратированных молекул на границе раздела с воздухом. Способность лигносульфонатов образовывать в кислых средах макромолекулярные структуры с локализацией функциональных групп усиливает их гидрофобные и поверхностно-активные свойства. Усиление олеофильных свойств лигносульфонатов по мере уменьшения рН подтверждалось большей депрессией поверхностного натяжения и уменьшением (не менее чем на 25%) сил когезионного взаимодействия составляющих в объеме раствора.

ЗАКЛЮЧЕНИЕ

По результатам выполненных исследований установлены поверхностно-активные свойства и закономерности ассоциативнодиссоциативных и кислотно-основных превращений в растворах лигносульфонатов во взаимосвязи с особенностями их состава:

- степень диссоциации лигносульфонатов уменьшается по мере увеличения их молекулярных масс и по мере разбавления растворов; при концентрациях свыше 0,04 г/дм³ интенсифицируются процессы ассоциации;
- во времени и при повышенных температурах низкомолекулярные лигносульфонаты подвергаются гидролизу, который сопровождается увеличением рН-среды и носит обратимый характер;
- гидратированные образования низкомолекулярных разновидностей ЛС№1 и ЛС№2 вызывают меньшую депрессию поверхностного натяжения растворов. По мере уменьшения

рН гидратируемые группы лигносульфонатов локализуются во внутренней структуре макроассоциатов, что способствует увеличению поверхностной активности.

СПИСОК ЛИТЕРАТУРЫ

1. Набойченко С.С., Ни Я.М., Шнеерсон Я.М., Чугаев Л.В. Автоклавная гидрометаллургия цветных металлов. - Екатеринбург:

- ГОУ УГТУ-УПИ, 2002., с. 940.
- 2. Sayed M.S., Aly M.S., Mousa M.A. // Journal of Radioanalytical and Nuclear Chemistry. 2001.- Vol 247, № 1, -P. 139-144.
- 3. Шелудко А. Коллоидная химия. М.: Мир, 1984. с.319.
- Можейко Л.Н., Балцере Д.Ю., Гринева Л.А., Яунземс В.Р. // Химия древесины.-1972.-№11.- С. 87-91.

ПОЛИМЕРНЫЕ АДСОРБЕНТЫ АФФИННОГО ТИПА В ИССЛЕДОВАНИИ ФИЗИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ. XXVI. ИЗУЧЕНИЕ ЛЕКАРСТВЕННОГО ПРЕПАРАТА, СОДЕРЖАЩЕГО ЭКСТРАКТ ГИНКГО БИЛОБА, МЕТОДОМ НЕКЛАСИЧЕСКОЙ АФФИННОЙ ХРОМАТОГРАФИИ

В.В. Халахин, П.В.Кузнецов

В настоящей работе впервые сконструирован адсорбент аффинного типа, содержащий в качестве линагда-модификатора сумму флавоноидов экстракта Гинкго Билоба (EGb 761), который использован для разделения суммы флавоноидов данного экстракта. В полученных двух флавоноидных фракциях идентифицированы следующие вещества: изорамнетин, кемпферол (первая фракция), кверцетин (вторая фракция), что соответствует данным литературы.

ВВЕДЕНИЕ

По литературным данным известно [1,2], лекарственный препарат Танакан (EGb761, Франция) содержит следующие основные группы биологически активные веществ (БАВ): терпеновые вещества, флавоноидные гликозиды, гинколиды А, В, С, билобалиды и органические кислоты [3]. Нам удалось ранее [4,5] методом жидкостной хроматографии (ЖКХ) на универсальном адсорбенте сефадекс LH-20 (СФ-20) и некоторых его химически модифицированных аналогах разделить БАВ лекарственного средства Танакан на две ключевые фракции. Первая фракция содержит сумму терпеновых веществ, вторая - сумму флавоноидов.

Цель данной работы: синтез оригинального азоадсорбента аффинного типа (азо-ААфТ), в котором в качестве лигандамодификатора мы использовали суммарную флавоноидную фракцию (СФФ), полученную ранее методом ЖКХ на СФ-20.

Полученный азо-ААфТ применен нами для разделения и изучения флавоноидных БАВ данного препарата.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В настоящей работе нами использованы химические реагенты и вещества; эпихлоргидрин (ЭХГ, "Sigma", США), п-нитробензгидразид (п-НБГ, "Sigma", США), натрия нитрит, натрия дитионит (Япония); следующие сорбенты: СФ-20("Pharmacia", Швеция) и химически эпоксимодифицированный аналог СФ-20-ЭХГ-п-НБГ-СФФ. Другие предиметилсульфоксид (Димексид, "Татхим-фармпрепараты", Казань, КПХФО (ДМСО) соответствовали квалификации х.ч. или ч.д.а. Для тонкослойной хроматографии (ТСХ) применяли хроматографические пластины "Silufol" производства фирмы "Kavalier" (Чехия). Природные стандартные вещества, производные флавоноидов: кверцетин ,изорамнетин, кемпферол, получены из коллекции аналитических образцов кафедры фармакогнозии И ботаники Санкт-Петербургской химико-фармацевтической академии (заведующий кафедрой профессор Яковлев Г.П.).

Синтез азо-ААФТ проводили по следующим стадиям: