мовоспламенение газовой фазы в замкнутом объеме при достижении нижнего концентрационного предела взрываемости по PH_3 .

выводы

- 1. Определена константа скорости реакции диспропорционирования фосфорноватистой кислоты равная 1.96 10⁻⁵с⁻¹, порядок реакции равен единице. Энергия активации диспропорционирования увеличивается с 88 кДж/моль до 138 кДж/моль, что связано с началом термического окисления фосфина.
- 2. Установлено пропорциональное возрастание скорости процесса диспропорционирования с увеличением концентрации кислоты с 30 90 %.
- 3. Замедление процесса диспропорционирования H_3PO_2 выше концентрации выделившегося фосфина 3.5-4 мгм/л объясняется накоплением термостойкой H_3 PO_3 и разбавлением ею H_3PO_2 .

СПИСОК ЛИТЕРАТУРЫ

- Ван Везер. Фосфор и его соединения. М.: И. Л., 1962, 687с..
- Сперанская Г.В., Таланов Н.Д., Азиев Л.Г. // Ж. прикл. х. 1978, т. 54, № 8, с. 1705
- 3. Королев В,В., Таланов Н. Д., Астахова Г.В. // Извест. АН СССР, Сер. Неорганические материалы, 1986,22, № 7, с. 1214-1216.
- 4. Бродский А.А., Бланкштейн В.А., Ершов В.А., Таланов Н.Д. Переработка фосфора. Л.: Химия, 1985,199 с.
- W.A. Jenkins, R.T. Jones, J.Amer. Chem. Soc, 74, 1353 (1952).
- 6. Потемкин Л.В., Мусатова Ю.Г. Газохроматографические методы определения состава газовых выбросов в фосфорной промышленности: Учебное пособие для рабочих профессий. М.:НИИТЭХИМ, 1985. 95 с.
- Шечков Г.Т., Лялин Н.С. // Тез. докл. Вс. семинара «Пластич. деформация материалов в условиях вненш. энергетич. воздействий.» .Новокузнецк. 1988, 234-235.
- Мирошниченко А.Г., Луненок-Бурмакина В.А. // Ж.неорг.химии. 1970,т.15, в10, с.2595-2601.
- 9. Романова Н.В., Демиденко Н.В. // Успехи химии, 1975, т.64, № 12, С. 2150 2170.

СОСТАВ ПРОДУКТОВ НА ПОВЕРХНОСТИ КРАСНОГО ФОСФОРА

Г.Т. Шечков

Определен состав продуктов темодесорбции с поверхности красного фосфора. Установлены температурные интервалы выделения фосфина, разложения продуктов окисления H_3PO_2 и H_3PO_3 .

В процессе хранения аморфного красного фосфора (α - P_{κ}) как индивидуального, так и в гетерогенных системах с участием окислителей происходит окисление фосфора с образованием конденсированных (H_3PO_2 , H_3PO_3 , H_3PO_4) и газообразных (PH_3 , H_2) продуктов. Кроме H_3PO_4 все продукты -восстановители и могут взаимодействовать с окислителями, вызывая деградацию свойств составов или их самопроизвольное самовоспламенение.

Поэтому задача настоящей работы: установить температурные границы образования, выделения и превращения газообразных и конденсированных продуктов окисления красного фосфора комплексом методов при $V_{\rm H}$ = 5 град./ мин. и в статических условиях при T = const.

Методом хроматографии (ЛХМ - 80 МД, скорость подачи носителя - азота 30 мл. / мин., детектор по теплопроводности, адсорбент - полисорб, ток детектора - 100 мА, температура колонки - 100 °С, погрешность определения фосфина \pm 2 %). Исследовали очищенный технический α - $P_{\rm K}$, а также его фиолетовую фракцию дисперсностью (d) 30 < d < 120 мкм; масса - 1 \pm 0,01 г.

Масс - спектрометрию проводили на радиочастотном МХ - 7304 на α - $P_{\mbox{\tiny K}}$, содержащем менее $10^{\text{--}4}$ моль. % продуктов окисления и 7 суток тренировавшегося в вакууме $10^{\text{--}7}$. Па при $T=50~{}^{\circ}$

В изотермическом режиме выделение PH_3 из α - P_κ и H_3PO_2 регистрировали в замкнутом объеме в интервале $30-190\,^{\circ}C$ в атмосфере с ϕ = 70 % методом хроматографии.

Тепловые процессы на поверхности α - P_{κ} изучали дериватографически (Q - 1500, производство Венгрии) при V_{H} = 5 град. / мин. в атмосфере воздуха при ϕ = 70 %.

Слабое фосфиновыделение с поверхности α - P_{κ} при $V_{\rm H}$ = 5 град. / мин. начинается при t > 20 °C (схема1), далее наблюдаются интенсификация процесса и 2 максимума выделения PH_3 при 140 и 260 °C в интервале 100 - 170 и 190 - 290 °C, которые обусловлены диспропорционированием H_3PO_2 , H_3PO_3 . образующихся при окислении α - P_{κ} , по схемам 2 и 3.

$$2(\alpha-P_K) + 3H_2O \rightarrow PH_3 + H_3PO_3$$
 (1)
T>70 °C

$$3H_3PO_2 \rightarrow 2H_3PO_3 + PH_3$$
 (2)
T>180°C

$$4H_3PO_3 \rightarrow 3H_3PO_4 + PH_3$$
 (3)

Дериватография подтвердила реальность процессов (1 – 3) наличием эндотермических процессов и двух экзотермических в области указанных температур, вызванных окислением фосфина кислородом воздуха.

Для α - $P_{\rm k}$ и $H_3{\rm PO}_2$ и $H_3{\rm PO}_3$ обнаружены эндотермические процессы плавления кислот соответственно при 28 и 75 °C, а также гидратация кислот по схемам 4 и 5, подтвержденных масс - спектрометрически по выделению водорода.

$$H_3PO_2 + H_2O \rightarrow H_3PO_3 + H_2$$
 (4)

$$H_3PO_3 + H_2O \rightarrow H_3PO_4 + H_2$$
 (5)

Выше 290 °С для α - P_{κ} и выше 190 °С H_3PO_2 в замкнутом объеме наблюдается воспламенение газовой фазы в системе PH_3 - H_2 - O_2 - H_2O .

В изотермических (30 - 190 °C) условиях в замкнутом реакторе кинетические кривые фосфиновыделения α - $P_{\rm k}$ и $H_3{\rm PO}_2$ трансформируются от S-образного вида к σ -образному и далее выше 130 °C и при T > 135 выходят на насыщение. Выше 155 °C индукционный период практически исчезает. При T=160 °C и выше процесс протекает экспоненциально и завершается при изучении $H_3{\rm PO}_2$ воспламенением газовой фазы, вероятно, вследствие достижения нижнего концентрационного придела взрываемоети по фосфину. Выход кинетических кривых на насыщение связан с двумя причинами.

1. Поверхностное и газофазное окисление фосфина по схеме 6:

$$4PH_3 + 5O_2 \rightarrow 2P_2O_5 + 6H_2$$
 (6) P_2O_5 далее гидролизируется до H_3PO_4 .

2. Поверхность α - $P_{\rm k}$ экранизируется пленкой H_3 PO₄, что и затрудняет выделение PH₃ в атмосферу и взаимодействие фосфора с H_2 O и O₂. В результате реакция переходит из кинетической области в диффузионную, что и проявляется в трансформации S-образных кривых в σ -образные.

Энергия активации выделения PH_3 (диспропорционирование H_3PO_2) в области 110 - 160 °C составляет 85 ± 5 к Дж / моль. По данным дериватографии энергия активации реакции приведенной на схеме 2 удовлетворительно совпадает (70 \pm 5 кДж/моль) с выше приведенным значением.

Энергия активации газофазного окисления фосфина, рассчитанная в области 290 – 310 °C по максимуму экзоэффекта при 290 °C (дериватография) в ходе реакции (схемы 2, 3) составляет 207 \pm 10 к Дж / моль. Отметим, что это значение практически совпадает со значением $E_{\text{акт}}$ воспламенения «чистого» фосфина в области 310 - 350 °C в стеклянных сосудах равной 205 \pm 10 кДж/моль, по литературным данным.

Можно сделать вывод, что $E_{\text{акт}}$ равные 85.5 и 70.5 к Дж / моль, соответственно по изотермическим исследованиям (хроматография и дериватография) соответствуют совместно протекающим процессам окисления α - $P_{\text{к}}$, диспропорционирования $H_3\text{PO}_2$ и началу процесса окисления образующегося фосфина (PH_3).

По данным масс- спектрометрии отмеченные процессы также идентифицированы. В составе газообразных продуктов обнаружены ионы: H_2^+ , N_2^+ , CO_2^+ , PH_3^+ , H_2O^+ , атомарный (испаренный фосфор) P^+ и осколочные ионы CO^+ , OH^+ , PH^+ , PH_2^+ и др. Кислород не обнаружен, что указывает на его прочную связь с остовом α - P_ν .

В 1 -м цикле нагрева до 360 °С испарилось до 8 % (α - P_{κ}), в ходе 2 - го цикла нагрева появляется острый максимум выделения H_2 в области 20 - 25 °С и сопряженный с ним небольшой максимум выделения H_2 О при 25 °С.

В области 30 - 35 °C после максимума ионов H_2^+ появляется острый максимум ионов PH_3^+ . При этом 3-й максимум выделения ионов H_2^+ (1/5 амплитуды первого) наблюдается при 50 - 55 °C и вслед за ним при 70 °C следует максимум выделения ионов PH_3^+ и интенсивный пик выделения ионов PH_3^+ и интенсивный пик выделения ионов PH_3^+ при 65 - 80 °C т.е. происходит дегидратация поверхности и при поверхностного объема частиц α - P_{κ} , а также одновременно гидратация поверхности α - P_{κ} и продуктов его окисления.

Выше 70 °C наблюдается максимум выделения ионов PH₃⁺ подтверждающий реак-

ШЕЧКОВ Г.Т.

ции (2, 3) и интенсивный пик ионов H_2O^+ , указывающий на десорбцию молекул H_2O с поверхности $\alpha\text{-P}_\kappa$.

Выделение ионов H_2 выше 80 °С имеет волновой характер с периодом по температуре 25 - 30 °С, что мы связываем с клатратным окислением α - P_{κ} и продуктов его окисления парами воды «замурованными» в порах между частицами α - P_{κ} при синтезе. Волновой характер выделения H_2 , H_2 O и PH_3 позволяет утверждать, что они продукты - газофазного окисления α - P_{κ} парами H_2 O, захваченными в процессе синтеза из белого фосфора в объеме между глобулами красного.

Известно, что влага и O_2 при этом всегда содержатся в исходном белом фосфоре в количестве до 1,5 – 2 %.

В дальнейшем выше 120 °С выделение ионов ${\rm H_2}^+$, ${\rm CO_2}^+$, ${\rm H_2O}^+$ протекает не с постоянной скоростью (импульсно), что указывает

на неоднородность полостей по их размерам и прочности: гранулы прочнее с поверхности и менее прочные по мере продвижения в объеме частиц α - P_{κ} с нарастанием числа циклов прогрева.

Выделение CO_2 указывает (при чувствиительности масс-спектрометрии 10^{-11} моль. %), что исходный белый фосфор загрязнен углеродом электродов, используемых при синтезе P_6 , выделение CO_2 - результат окисления углерода клатратно (канально) захваченной в α - P_{κ} H_2O .

Характер выделения газов: и импульсный (H_2, PH_2) и непрерывный (CO_2) свидетельствует о наличии в исходном α - P_κ как открытых так и закрытых пор.

Таким образом процесс окисления α - P_{κ} протекает как в объеме гранул красного фосфора так и на поверхности.