таллов и сплавов. – М.: Металлургия. 1965. – 429 c

- 3. Краткая химическая энциклопедия. Т.1. -1961. М.: Советская энциклопедия, 1263 c.
- 4. Стриха В.И., Бузанева Е.В. Физические осконтактов надежности новы металлполупроводник в интегральной электронике. – М.: Радио и связь, 1987. – 254 с.
- Спиридонов А.В. // Строительные материалы. 1998. № 7. С. 4-6. Индутный И.З., Костышин М.Т., Касярум 5.
- 6 О.П. и др. Фотостимулированные взаимодействия в структурах металл - полупроводник. – Киев: Наукова думка, 1992. – 240 с.
- 7. Суровой Э.П., Бугерко Л.Н., Расматова С.В. // Журн. физич. химии. 2004. Т. 78. № 4. С. 663-668.
- 8. Кофстад П. Высокотемпературное окисление металлов. – М.: Мир. 1969. – 392 с.
- Окисление металлов / Под ред. Ж. Бенара. 9. – М.: Металлургия. 1969. – 448 с.
- Кофстад П. Отклонение от стехиометрии. 10. Диффузия и электропроводность в простых окислах металлов. – М.: Мир. 1975. – 399 с.
- 11. Метфессель, С. Тонкие пленки, их изготовление и измерение. - М. - Л.: Госэнергоиздат, 1963. – 272 с.
- 12. Лазарев В.Б., Соболев В.В., Шаплыгин И.С. Химические и физические свойства простых оксидов металлов. – М.: Наука. 1983. – 239 c.

- Технология тонких пленок / Под ред. Л. 13. Майссела, Р. Гленга. – М.: Советское ра-дио, 1977., Т. 1. – 664 с.
- 14. Борисова Н.В., Суровой Э.П. // Коррозия: материалы, защита. 2007. № 6. С. 13-18. Суровой Э.П., Борисова Н.В. // Материало-
- 15.
- ведение. 2008. № 9. С. 34-39. Суровой Э.П., Бин С.В., Борисова Н.В. // Ползуновский вестник. 2008. № 3. С. 104-16. 108.
- 17. Суровой Э.П., Бин С.В., Борисова Н.В. // Коррозия: материалы, защита. 2008. № 11. C. 4-10.
- 18. Surovoy E.P., Borisova N.V., Titov I.V. // Изв. вузов. Физика. 2006. № 10. Приложение. C. 338-341.
- Суровой Э.П., Борисова Н.В. // Журн. физ. химии. 2008. Т. 82. № 2. С. 2120-2125. Суровой Э.П., Бугерко Л.Н. // Химическая 19.
- 20. физика. 2002. Т. 21. № 7. С. 74-78. Суровой Э.П., Титов И.В., Бугерко Л.Н. //
- 21. Материаловедение. 2005. № 7. С. 15-20.
- Гуревич М.М. Фотометрия. Л.: Энерго-атомиздат, 1983. 272 с. 22.
- Эпштейн М.И. Измерения оптического из-23 лучения в электронике. – Л.: Энергоатомиздат, 1990. – 256 с.

ФОТОХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ В НАНОРАЗМЕРНЫХ **СЛОЯХ WO**₃

Э.П. Суровой, С.В. Бин, В.П. Морозов

Облучение пленок WO₃ (d = 7-160 нм) светом (λ = 320 нм. I = (1.5 – 7) \cdot 10¹⁵ квант см⁻² с⁻¹) наряду со смещением края полосы поглощения в коротковолновую область спектра приводит к формированию полосы поглощения при λ = 850 нм. Установлен край полосы собственного поглощения пленок WO_3 ($\lambda = 320$ нм). Степень превращения пленок WO_3 при увеличении интенсивности падающего света и времени облучения (1-140 мин.), а также при уменьшении толщины пленок в атмосферных условиях – возрастает. Предложен механизм фотохимического превращения пленок WO₃, включающий: генерацию электрон-дырочных пар, рекомбинацию части неравновесных носителей заряда, формирование центров [(e (V_a)⁺⁺ e], выделение продуктов фотолиза.

ВВЕДЕНИЕ

Изучение закономерностей процессов, протекающих в наноразмерных слоях различных материалов под действием энергетических факторов, представляет интерес как для физики и химии твердого состояния, так и в связи с необходимостью разработки рекомендаций по применению реальных систем при различных внешних воздействиях [1-3]. Среди разнообразных неорганических материалов особое место занимает оксид вольфрама (VI). Оксид вольфрама (VI) и системы на его основе привлекают внимание исследователей различного профиля [4-17]. WO₃ используют как исходный материал для получения вольфрама, его сплавов и других соединений. Его применяют в качестве катализатора при переработке нефти (крекинг. гидрогенизация), как составную часть керамических глин, глазурей, эмалей, красителей. Устройства на основе оксида вольфрама (VI) могут быть рекомендованы к использованию в качестве электрохромных и фотохромных

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2009

дисплеев, электрохромных зеркал или светоперераспределяющих фильтров [6-9, 11-14], сенсоров для контроля содержания газов в атмосфере [10]. В работе представлены результаты исследований закономерностей процессов, протекающих в условиях атмосферы в наноразмерных слоях WO₃ различной толщины при облучении их светом из области собственного поглощения WO₃ в зависимости от интенсивности падающего света и времени облучения.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Образцы для исследований готовили методом термического испарения в вакууме (2·10⁻³ Па) путем нанесения тонких (d = 7-160 нм) пленок WO₃ на подложки из стекла, используя вакуумный универсальный пост «ВУП-5М» [17 - 20]. Подложки подвергали предварительной обработке в концентрированной азотной кислоте, в растворе дихромата калия в концентрированной серной кислоте, в кипящей мыльной воде, промывали в дистиллированной воде и сушили [17 - 20]. Обработанные подложки оптически прозрачны в диапазоне 300 - 1100 нм.

Толщину пленок WO₃ определяли спектрофотометрическим (спектрофотометр «Shimadzu UV-1700»), микроскопическим (интерференционный микроскоп «МИИ-4»), эллипсометрическим (лазерный эллипсометр «ЛЭФ-3М») и гравиметрическим (кварцевый резонатор) методами [17 - 19]. Образцы экспонировали при температуре 293 К в атмосферных условиях. Источниками света слуртутная (ДРТ-250) и ксеноновая жили (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматор МСД-1 и набор светофильтров. Актинометрию источников света проводили с помощью радиационного термоэлемента PT-0589. Регистрацию эффектов до и после облучения образцов осуществляли спектрофотометрическим методом.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате систематических исследований оптических свойств наноразмерных пленок WO₃ было установлено, что спектры поглощения и отражения образцов до облучения существенно зависят от их толщины. На рисунке 1 в качестве примера приведены представительные спектры поглощения пленок WO₃ разной толщины. Видно, что для образцов разной толщины можно выделить характерные для пленок и монокристаллов WO₃ [4, 6, 9, 10, 17] — коротковолновую $\lambda < 330$ нм и длинноволновую $\lambda > 330$ нм области поглощения.

Определение края полосы поглощения пленок WO₃ в значительной степени осложнено из-за наличия полосы поглощения в интервале $\lambda = 300-450$ нм с максимумом при $\lambda = 350$ нм. После предварительной фотохимической обработки образцов светом из области собственного поглощения WO₃ полоса поглощения с максимумом $\lambda = 350$ нм практически полностью исчезала. Оптическую ширину запрещенной зоны пленок WO₃ оценили по формулам [21], используя спектры поглощения образцов, подвергнутых предварительной фотохимической обработке. Установлено, что край полосы поглощения пленок WO₃ находится при $\lambda \approx 320$ нм.

В длинноволновой области спектра по мере увеличения толщины пленок WO_3 (d \approx 7-80 нм) наблюдается бесструктурное увеличение оптической плотности. При дальнейшем увеличении толщины пленок WO_3 (d \approx 80-160 нм) формируется размытая полоса поглощения с максимумом при $\lambda = 450$ нм, которая по мере увеличения толщины пленок WO_3 постепенно смещается в длинноволновую область спектра. Появление полос поглощения и отражения в длинноволновой области спектра связано с наличием примесей, структурных и собственных дефектов и интерференцией [4-15].

При воздействии на пленки оксида вольфрама (VI) различной толщины светом из области собственного поглощения WO₃ оптические свойства (спектры поглощения и

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2009

отражения) образцов претерпевают существенные изменения. Наблюдаемые изменения спектров поглощения и отражения, а также предельные значения оптической плотности в максимумах и минимумах полос поглощения (реализуемых после воздействия на образцы света) зависят от толщины пленок WO₃, интенсивности падающего света и времени облучения.

Рисунок 2. Спектры поглощения пленки оксида вольфрама (VI) толщиной 50 нм до (1) и после облучения светом λ = 320 нм I = 2,7·10¹⁵ квант см⁻² с⁻¹ при 293 К в течение 2 (2), 5 (3), 10 (4) мин

На рисунке 2 в качестве примера приведены спектры поглощения пленки WO3 толщиной d = 50 нм до и после облучения светом из области собственного поглощения WO_3 ($\lambda = 320$ нм). В процессе облучения край полосы поглощения пленки WO₃ смещается в коротковолновую область спектра. Область нестехиометрии, в которой сохраняется структура оксида вольфрама (VI), очень мала [5,11,12,15]. Мы полагаем [17,19], что полоса поглощения в диапазоне $\lambda = 300-450$ нм с максимумом при $\lambda = 350$ нм (центр T₁) в области края собственного поглощения монокристаллов и пленок WO₃ связана со стехиометрическим недостатком кислорода и обусловлена вакансиями кислорода с одним захваченным электроном $[(V_a)^{++} e]$. Этот центр формируется в процессе приготовления пленок WO₃ различной толщины, а при воздействии света $\lambda = 320$ нм претерпевает фотохимическое превращение - значения оптической плотности уменьшаются и, как следствие, край полосы поглощения пленки WO₃ смещается в коротковолновую область спектра. В длинноволновой области спектра наблюдается увеличение значений оптической

плотности в интервале $\lambda = 450-1100$ нм с максимумом $\lambda = 850$ нм (формируется центр T₂).

По мере увеличения толщины образцов (при облучении светом одинаковой интенсивности) наблюдается возрастание эффектов изменения оптической плотности во всем исследованном спектральном диапазоне. С увеличением интенсивности падающего света в диапазоне (I = $1,5 - 7 \ 10^{15}$ квант см⁻²·c⁻¹) при одинаковой толщине пленок WO₃ изменения оптической плотности возрастают. При облучении пленок WO3 различной толщины светом из длинноволновой области спектра (λ ≥ 900 нм) наблюдаются увеличение оптической плотности в диапазоне $\lambda = 450-1100$ нм с максимумом $\lambda = 850$ нм. При воздействии на предварительно облученные при λ = 320 нм пленки WO₃ светом λ = 850 нм наблюдается уменьшение значеоптической плотности в диапазоне ний $\lambda = 450-1100$ нм с максимумом $\lambda = 850$ нм. Одновременно наблюдается смещение края полосы поглощения в длинноволновую область спектра, которое связано с увеличением оптической плотности в коротковолновой области спектра λ = 300-450 нм с максимумом λ = 350 нм. Для выяснения закономерностей протекания процесса фотостимулированного превращения пленок оксида вольфрама (VI) различной толщины были рассчитаны и построены кинетические кривые степени превращения $\alpha = f(\tau)$ (где τ – время облучения) при $\lambda = 850$ нм в зависимости от толщины пленок WO3 и интенсивности падающего света. При построении кинетических кривых степени превращения был применен подход предложенный в [17-19]. Спектры поглощения пленок WO₃ (предварительно облученных светом из области собственного поглощения при различных интенсивностях и временах облучения) пересекаются в одной (изобестической) точке, в которой оптическая плотность не зависит от времени воздействия света. Слева и справа от изобестической точки поглощение (Аобр) зависит от времени фотохимической обработки, а наблюдаемая оптическая плотность его при определенном времени облучения будет складываться из поглощения, связанного с наличием центра T₁ (A_{U1}) и центра T₂ (A_{U2}):

$$A_{obp} = A_{L1} + A_{L2}$$

Учитывая [22], что падающая по нормали на поверхность какой-либо системы световая волна от источника излучения, претерпевает зеркальное отражение, рассеяние, поглощение и пропускание для расчета истинного вызванного поглощением света в веществе значения оптической плотности воспользовались уравнением [19]:

A

$$_{ofp.} = A + Ig(1 - R)$$

где А - измеряемое в реальных условиях на спектрофотометре полное значение оптической плотности, включающее несколько составляющих

$$A = A_{o \delta p} + A_{o \tau p} + A_{pac},$$

где Аобр – значение оптической плотности образца; А отр – значение оптической плотности, обусловленное потерями на зеркальное отражение света поверхностью образца; Арас значение оптической плотности, обусловленное потерями на диффузное рассеяние света поверхностью образца.

Итоговое выражение для определения степени фотохимического превращения цен-

тра T₁ в центр T₂ [19]: $\alpha = (A_{ofp} - A_{U1}^{-1}) / (A_{U2}^{-1} - A_{U1}^{-1}),$ где A_{U1}¹, A_{U2}¹ – предельная оптическая плотность центра T_1 и центра T_2 при λ = 850 нм.

Степень фотохимического превращения центра T₁ в центр T₂ зависит от первоначальной толщины пленок WO₃, времени облучения и интенсивности падающего света. Независимо от толщины пленок WO3 и интенсивности падающего света при увеличении времени облучения степень превращения возрастает. На рисунке 3 в качестве примера приведены кинетические кривые степени превращения в зависимости от толщины образцов.

вольфрама (VI) при облучении светом $\lambda = 320$ нм и интенсивности $I = 2,7 \cdot 10^{15}$ см⁻²·c⁻¹: 1 – 5 нм; 2 – 12 нм; 3 – 20 нм; 4 – 45 нм; 5 – 65 нм

Видно, что при облучении образцов светом из области собственного поглощения по мере увеличения толщины пленок WO3 степень превращения уменьшается.

Рисунок 4. Зависимость степени превращения центра 2 пленок оксида вольфрама (VI) толщиной 65 нм от интенсивности падающего света (I = см⁻² с⁻¹): 1) 1,5•10¹⁵, 2) 1,8•10¹⁵, 3) 2,7•10¹⁵, 4) 5•10¹⁵, 5) 7•10¹⁵.

Увеличение интенсивности падающего света (при постоянной толщине пленок WO₃) приводит к возрастанию скорости фотохимического превращения (рисунок 4). При облучении пленок WO_3 светом $\lambda = 850$ нм наблюдается уменьшение оптической плотности в диапазоне $\lambda = 450-1100$ нм с максимумом λ = 850 нм и смещение края полосы поглощения WO3 в длинноволновую область спектра.

Рисунок 5. Диаграмма энергетических зон оксида вольфрама (VI), Ev - уровень потолка валентной зоны, E_c - уровень дна зоны проводимости, E_F - уровень Ферми, E₀ - уровень вакуума, R^+ - центр рекомбинации, T_1 - центр [(V_a)⁺⁺ e], Т₂ – центр [e (V_a)⁺⁺ e]

Мы полагаем, что уменьшение максимума поглощения при $\lambda = 350$ нм, а также формирование максимума поглощения при $\lambda = 850$ нм в процессе облучения пленок WO₃ взаимосвязанные процессы и являются результатом фотостимулированного преобразования центра [(V_a)⁺⁺ e]. На рисунке 5 приведена диаграмма энергетических зон WO₃, при построении которой использованы результаты измерений спектров поглощения и отражения, образцов разной толщины, до и после воздействия света из различных спектральных областей.

При облучении оксида вольфрама (VI) светом из области собственного поглощения имеет место интенсивная генерация электрон-дырочных пар в WO₃ (рисунок 5, переход 1)

 $A^{2-} \rightarrow p + e$.

Часть неравновесных носителей заряда рекомбинирует (рисунок 5, переходы 2,3)

 $R^+ + e \rightarrow R^0 + p \rightarrow R^+$,

где R⁺ – центр рекомбинации.

Другая часть неравновесных электронов может восстанавливать W⁶⁺

 $e^+ W^{6^+} \rightarrow e^+ W^{5^+} \rightarrow e^+ W^{4^+} \rightarrow \dots \rightarrow W^0 + V_{\kappa}^{6^-}$, а также переходить из зоны проводимости на уровни центра T₁ (рисунок 5, переход 4) участвуя в образовании центра T₂

 $e + [(V_a)^{++} e] \rightarrow [e (V_a)^{++} e].$

Дырки могут захватываться собственными (V⁶⁻) и примесными (T⁻) дефектами с выделением кислорода и освобождением анионных вакансий:

$$p + V_{\kappa}^{6-} \rightarrow [V_{\kappa}^{6-} p] + p \rightarrow [p V_{\kappa}^{6-} p] \rightarrow O_2 + 2e + 2V_a^{++} + V_{\kappa}^{6-},$$

р + T⁻ → T⁰ + р → T⁺ → O₂ + 2e + 2V_a⁺⁺ + T⁻ где V_κ⁶⁻ и V_a⁺⁺ - катионная и анионная вакансии.

При облучении пленок WO_3 светом из длинноволновой области спектра ($\lambda = 850$ нм) имеет место фотостимулированный переход электронов с уровней центра T_2 в зону проводимости WO_3 (рисунок 5, переход 6)

 $[e (V_a)^{++} e] \rightarrow e + [(V_a)^{++} e] \rightarrow e + (V_a)^{++}$

Уменьшение концентрации [е (V_a)⁺⁺ е] центров приведет и к соответствующему уменьшению оптической плотности в диапазоне $\lambda = 450-1100$ нм с максимумом $\lambda = 850$ нм. Неравновесные электроны могут принимать участие в процессе восстановления W⁶⁺ (см. выше), а также взаимодействовать с анионными вакансиями с образованием центров T₁

 $e + (V_a)^{++} \rightarrow [(V_a)^{++} e].$

Формирование центров T_1 приведет к увеличению оптической плотности в диапазоне $\lambda = 300-450$ нм с максимумом при $\lambda = 350$ нм и, как следствие, к смещению края полосы поглощения WO₃ в длинноволновую область спектра.

СПИСОК ЛИТЕРАТУРЫ

- Стриха В.И., Бузанева Е.В. Физические основы надежности контактов металл-полупроводник в интегральной электронике. – М.: Радио и связь. 1987. – 254 с.
- Халманн М. Энергетические ресурсы сквозь призму фотохимии и фотокатализа. – М.: Мир. 1986. – 578 с.
- Груздков Ю. А., Савинов Е. Н., Пармон В. Н. Фотокатализ дисперсными полупроводниками // Фотокаталитическое преобразование солнечной энергии. Новосибирск: Наука, 1991. С. 138 - 179.
- Третьяков Ю. Д. Химия нестехиометрических окислов. – М.: Изд-во Московского ун-та, 1974. – 364 с.
- Лазарев В. Б., Соболев В. В., Шаплыгин И. С. Химические и физические свойства простых оксидов металлов. – М.: Наука, 1983. – 239 с.
- Васько А.Т. Электрохимия молибдена и вольфрама. Киев: Наукова думка, 1977. 172 с.
- 7. Гуревич Ю. Я. Твердые электролиты. М.: Наука, 1986. – 176 с.
- 8. Лусис А. Р., Клеперис Я. Я. // Электрохимия. 1992. Т. 28. Вып. 10. С. 1450 - 1455.
- Фаунен Б.В., Крэнделл Р.С. Электрохромные дисплеи на основе WO₃ // Дисплеи. – М.: Издво «Мир», 1982. – 316 с.
- Giulio M.D., Manno D. // J. Mater. Sci.: Materials in Electronics. - 1998. V. 9. P. 317-322.
- Габрусенок, Е.В. Динамика решетки триоксида вольфрама // Электрохромизм. – Рига: Изд-во ЛГУ им. П.Стучки, 1987. – 143 с.
- Лазарев В.Б., Красов В.Г., Шаплыгин И.С. Электропроводность окисных систем и пленочных структур // – М.: Изд-во «Наука», 1979. – 168 с.
- Клявинь Я.К., Лагздонс Ю.Л., Лусис А.Р. // Физика и химия стеклообразующих систем. 1976. № 4. С. 141-149.
- 14. Maosong Tong, Guorui Dai // J. Mater. Sci. 2001. V. 36. P. 2535-2538.
- Раманс Г. М. Структура и морфология аморфных пленок триоксида вольфрама и молибдена. – Рига: ЛГУ им. П.Стучки, 1987. – 143 с.
- 16. Перельман Ф.М., Зворыкин А.Я.. Молибден и вольфрам.– М.: Изд–во «Наука», 1968г.– 140с.
- Surovoy E. P., Borisova N. V., Titov I. V. // Изв. вузов. Физика. 2006. № 10. Приложение. С. 338 - 341.
- Борисова Н. В., Суровой Э. П., Титов И. В. // Материаловедение. 2006. № 7. С. 16 - 21.
- 19. Суровой Э. П., Борисова Н. В. // Журн. физ. химии. 2008. Т. 82. № 2. С. 2120 2125.
- Технология тонких пленок / Под ред. Л. Майссела, Р. Гленга. – М.: Советское радио, 1977. Т. 1. – 664 с.
- 21. Панков Ж. Оптические процессы в полупроводниках. – М.: Мир, 1973. – 456 с.
- Эпштейн М.И. Измерения оптического излучения в электронике. Л.: Энергоатомиздат, 1990. – 256 с.