плоскостных расстояний и размеров стенок пор.

ЗАКЛЮЧЕНИЕ

- 1. Изменение коэффициента селективности соответствует изменению удерживаемых объёмов H_2 и CO, и изменяется от 10 для УМС500 до 14 для УМС600, 7 УМС700, и до 33 для УМС800.
- 2. Увеличение температуры получения УМС сопровождается монотонным ростом ширины и уменьшением высоты элементарных текстурных фрагментов, составляющих их матрицу.
- 3. Увеличения объёма пор в элементарных текстурных фрагментах УМС от УМС 500 к УМС 800 происходит монотонно и не коррелирует с быстрым ростом удельных удерживаемых объёмов H_2 и CO от УМС700 к УМС800.
- 4. Быстрое увеличение селективности разделения H_2 и CO в УМС800 в сравнении с УМС700 объясняется изменением электронодонорной и электроноакцепторной способности молекул аренов, составляющих стенки пор в ассоциатах аренов ЭНТФ углеродной матрицы УМС.

Авторы благодарят А.В.Волгина, Т.М. Наймушину за участие в подготовке образцов УМС, С.Ю.Лырщикова за обсуждение методики и результатов квантово-химического моделирования аренов, В.М. Пугачёва, В.Г.Додонова за выполнение рентгенодифракционного анализа образцов.

Работа выполнена при частичной поддержке фонда содействия развитию малых форм предприятий в научно-технической сфере по программе "УМНИК", проект № 7961.

СПИСОК ЛИТЕРАТУРЫ

- Stoeckli, F., Daguerre E., Gulliot A. (1999). Carbon, <u>37</u>, [12], p.2075.
 Stoeckli, F. and Centeno, T.A.. Carbon, <u>43</u>,
- Stoeckli, F. and Centeno, T.A.. Carbon, <u>43</u>, (2005), 1184-1190.
- 3. Junpirom, S., Do, D.D., Tangsathitkulchai, C. and Tangsathitkulchai, M. Carbon, 43, (2005), 1936-1943.
- Blayden H.E., Gibson J., Riley H.L. An X-ray study of the structure of coals, cokes and chars. In the proc. of the conf. on the "Ultrafine Structure of Coals & Cokes. Jume 24th – 25, 1943. The Royal Institution, London. Pp. 176 – 232.
- Brown J. K., Hirsch P. B. Nature, v. 175 (1955), p.229.
- Blumenfeld, L.A., Voevodsky, V.V. and Semenov, A.G. (1962). Applications of electron spin resonance in chemistry, SB RAS., Novosibirsk (in Russian). 240 pp.
- 7. Huttepain, M. and Oberlin, A. Carbon, <u>28</u>, (1990), 103-111.
- Pat. № 4,734,394 / Process for producing molecular sieve carbon / Kosaka. - March 29, 1988.
- 9. Бервено А.В., Бервено В.П., Лырщиков С.Ю., Когодеев С.Е. Зависимость селективности восстановленного и окисленного молекулярно ситового углеродного волокна от температуры активации // Международная конференция «Физико-химические процессы в неорганических материалах», Кемерово, 10-12 октября 2007.

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ НАНОРАЗМЕРНЫХ ЧАСТИЦ ТАЛЛИЯ ПРИ ФОТОЛИЗЕ АЗИДА ТАЛЛИЯ

Л.И. Шурыгина, Л.Н. Бугерко, Т.Ю. Кожухова

Методами масс-спектрометрии, спектроскопии и электронной микроскопии определены топография и кинетика накопления продуктов фотолиза $TIN_3(A)$. Оценены эффективные константы скорости фотолиза азида таллия. В результате измерений фото-ЭДС, фототока, контактной разности потенциалов, вольт-амперных характеристик установлено, что при фотолизе азида таллия формируются наноразмерные системы $TIN_3(A)$ — TI. Предложена модель фотолиза $TIN_3(A)$, включающая стадии генерации, рекомбинации и перераспределения неравновесных носителей заряда в контактном поле, образования конечных продуктов фотолиза.

ВВЕДЕНИЕ

Выделяющиеся при фотохимическом разложении твердофазные продукты оказывают существенное влияние на фотохимические и фотоэлектрические свойства неорганических азидов [1-12]. Систематические исследования автокаталитического и сенсибилизирующего влияния твердофазных продуктов на фотолиз неорганических азидов [8-12], а также параллельное изучение фотолиза и электрофизических свойств искусственно сформированных систем «азид - металл» [13-20, 22, 23] позволили существенно продвинуться в направлении понимания механизма фотолиза неорганических азидов при глубоких степенях превращения.

В настоящем сообщении представлены результаты работы, направленной на исследование кинетических и спектральных закономерностей фотолиза до, в процессе и после предварительного разложения образцов азида таллия, идентификацию продуктов фотолиза $TIN_3(A)$, выяснение энергетической структуры контакта азид таллия — продукт фотолиза и причин, вызывающих продуктом разложения изменение фотохимической и фотоэлектрической чувствительности азида таллия.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Азид таллия марки A (TIN₃(A)) [9, 10, 18] синтезировали методом двухструйной кристаллизации: в 0,2 н водный раствор нитрата таллия (квалификации х.ч.) по каплям приливали 0,2 н водный раствор дважды перекристаллизованного технического азида натрия (скорость сливания 2 капли в секунду, тсинте- $_{3a}$ = 30 минут, T = 293 K, pH = 3). Образцы для исследований готовили прессованием таблеток $TIN_3(A)$ массой 150 мг при давлении 1.10^3 кг см $^{-2}$, либо путем тщательного диспергирования в 98 % этиловом спирте навесок $TIN_3(A)$ массой 150 мг, последующего равномерного нанесения (методом полива) в чашечки диаметром 1 см и сушили в эксикаторе в темноте при T = 293 К [9, 10, 18]. Измерения скорости фотолиза (V_{Φ}), фототока (i_{Φ}) и фото-ЭДС (U_{Φ}) образцов проводили в вакууме (1·10⁻⁵ Па). Источниками света служили ртутная (ДРТ-250) и ксеноновая (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматор МСД-1 и набор светофильтров. Актинометрию источников света проводили с помощью радиационного термоэлемента РТ-0589. В качестве датчика при измерении V_{Φ} использовали

лампу PMO-4C омегатронного спектрометра ИПДО-1, настроенного на частоту регистрации азота [19]. Измерения i_{Φ} и U_{Φ} проводили на установке, включающей электрометрический вольтметр В7-30 либо электрометр *TR*-1501 [20]. Спектры диффузного отражения (ДО) до и после облучения образцов измеряли на спектрофотометре СФ-4А с приставкой ПДО-1 при давлении Р ~ 10^{-4} Па, используя устройство [21], при дав-101,3 кПа на спектрофотометре Specord-M40 с приставкой на отражение 8^0d [22]. Контактную разность потенциалов (КРП) между азидом таллия, таллием и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [23]. Топографию твердофазных продуктов фотолиза азида таллия изучали методом угольных реплик на электронном микроскопе УЭМВ-1000.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В результате анализа кинетических закономерностей фотолиза и фототока азида таллия разных методов синтеза в зависимоинтенсивности ОТ $(I = 1.10^{13} - 1.10^{16} \text{ квант} \cdot \text{см}^{-2} \cdot \text{c}^{-1})$ и спектрального состава (350-1000 нм) падающего света было установлено, что азид таллия независимо от метода его приготовления проявляет общие кинетические закономерности. При облучении образцов светом $\lambda = 365 \text{ нм в об-}$ ласти интенсивного освещения $(I > 1.10^{14} \text{ квант см}^2 \text{ c}^{-1})$ при T = 293 K на кинетических кривых V_{Φ} можно выделить несколько vчастков: начальный (I), стационарный (II). возрастания (III), насыщения (IV) и спадания (V) (рисунок 1, кривая 1).

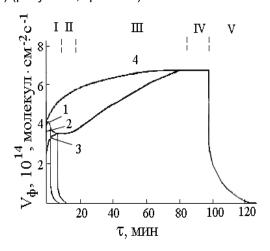


Рисунок 1. Кинетические кривые V_{Φ} TIN₃(A) при $\lambda = 365$ нм и $I = 3.17 \cdot 10^{14}$ квант см⁻² · с⁻¹ до

(1) и после прерывания освещения на I (2), II (3), IV (4) и участках кривых V_{Φ}

Время реализации разных участков кинетических кривых V_{Φ} , а также значения V_{Φ} зависят от интенсивности падающего света. Снижение интенсивности падающего света приводит к уменьшению V_{Φ} , а также к увеличению продолжительности участков кинетических кривых. На рисунке 2 (кривая 1) приведены спектральные распределения V_{Φ} и i_{Φ} , построенные по стационарным значениям V_{Φ} и i_{Φ} . Видно, что длинноволновый край V_{Φ} и i_{Φ} TIN₃(A) находится при $\lambda < 450$ нм.

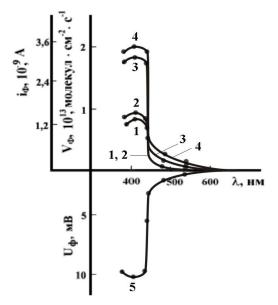


Рисунок 2. Спектральное распределение V_{Φ} (1, 3), i_{Φ} (2, 4) и U_{Φ} (5) до (1, 2) и после облучения TIN₃ (3, 4, 5) светом $\lambda = 365$ нм и $I = 1.0 \cdot 10^{14}$ квант-см⁻²-с⁻¹

Различные виды предварительных обработок, которые приводят к частичному разложению азида таллия (прогрев в вакууме 1·10⁻⁵ Па в интервале температур 340-420 К, облучение светом, «старение» образцов, обработка в восстановительной среде), уменьшают или полностью устраняют начальный максимум (участок 1) на кинетических кривых V_{Φ} . Повторное (после прерывания света на I и II участках) освещение образцов не приводит к заметному изменению V_{Φ} на II, III, IV участках кинетических кривых V_{Φ} (рисунок 1, кривые 2, 3) и кривых спектрального распределения V_{Φ} и i_{Φ} . Предварительное экспонирование образцов в течение 100 мин. приводит к монотонному увеличению V_{Φ} до постоянных значений (рисунок 1, кривая 4). При этом наряду с увеличением V_{Φ} и i_{Φ} в собственной области поглощения TIN₃(A) на кривых спектрального распределения V_{Φ} и i_{Φ} ,

появляется новая область фоточувствительности, длинноволновый порог которой простирается до 620 нм (рисунок 2, кривая 2).

Для обнаружения частиц металла в диэлектриках авторы [27] предложили сопоставить экспериментально наблюдаемую зависимость фототока от частоты излучения с током фотоэмиссии на границе раздела «металл – диэлектрик». Ток фотоэмиссии на границе $TIN_3(A) - TI$, вызываемый монохроматическим светом частоты $\omega > \omega_0$, где ω_0 - красная граница фотоэффекта, рассчитывали по [27]:

$$I = A(\omega - \omega_0)^2 f(\gamma),$$

$$f(\gamma) = \int_0^1 \frac{2(1-x)dx}{1 - \exp[-(\gamma x)^{-\frac{1}{2}}]} = \begin{cases} \frac{1 + 8\gamma \exp(-\gamma^{-\frac{1}{2}}) + ..., \gamma << 1,}{\frac{8}{15}\gamma^{\frac{1}{2}} + \frac{1}{2} + \frac{2}{9}\gamma^{-\frac{1}{2}} + ..., \gamma >> 1. \end{cases}$$

где A — константа, определяемая свойствами металла и границы раздела; x — переменная интегрирования; γ = h (ω - ω _o) / $E_{\rm A}$ — характеристический параметр; h — постоянная Планка; $E_{\rm A}$ = 33,5 \times ε ⁻² \times m / $m_{\rm O}$ — характеристическая энергия; $m_{\rm O}$ — масса электрона, m — эффективная масса; ε — диэлектрическая проницаемость среды.

Установлено, что расчетные значения тока фотоэмиссии на границе $TIN_3(A)$ — TI и экспериментально наблюдаемые значения фототока практически совпадают. Значения КРП для образцов, подвергнутых фотолизу, удовлетворительно совпадают с измеренными для искусственно нанесенного таллия [23] (таблица).

Таблица

Контактная разность потенциалов между азидом таллия, таллием и относительным электродом из платины

	КРП, В				
Образец	Давление, Па				
	1.10^{5}	1.10-5	1.10-5*	1.10-5**	1.10-5***
TlN ₃ (A)		+0,50	+0,10	+1,10	+1,00
T1	+1,00	+1,08	+1,08		

* После предварительной тепловой обработки при T = 350 К в течение 90 мин.

** После предварительного фотолиза при (= 365 нм, I = 1(1014 квант(см-2(с-1.

*** После предварительного термолиза при T = 550 К в течение 180 мин.

При изучении топографии твердофазного продукта фотолиза азида таллия установлено, что при интенсивностях $I=4\cdot10^{14}\text{-8}\cdot10^{15}$ квант·см⁻²·с⁻¹ и временах облучения образцов ($\lambda=365$ нм), соответст-

вующих достижению участков I и II кинетической кривой V_{Φ} , на кривых распределения частиц по размерам можно выделить максимумы, свидетельствующие о преимущественном формировании частиц размером 40-60 Å и 100-120 Å сферической формы, а при интенсивностях $I = 1.10^{13} - 1.10^{14}$ квант см ²⋅c⁻¹ формируются частицы размером 100-120 Å. Установлено, что число частиц на поверхности экспонированного при $\lambda = 365$ нм и $I = 3.17 \cdot 10^{14}$ квант см⁻² с⁻¹ (участок I кинетической кривой V_{Φ}) TIN₃(A) составляет \approx 10¹¹-10¹² см⁻². При увеличении времени облучения азида таллия до участка III частицы фотолитического таллия достигают размера 0.1-1.2 мкм и приобретают огранку. При больших временах освещения, соответствующих временам достижения участка IV, поверхность образцов практически полностью покрывается фотолитическим металлом. При незначительных степенях фоторазложения TIN₃(A) [10], когда перекрыванием частиц фотолитического таллия можно пренебречь, а концентрацию потенциальных центров роста (T_{Π}^{+}) считать постоянной, оценили удельную скорость формирования ядер $(W_{yg} = 5.2 \cdot 10^{-11} \text{ моль}^{-1} \cdot \text{c}^{-1} \cdot \text{cm}^{-2})$ и концентрацию потенциальных центров образования частиц таллия ($z_0 = 1,36 \cdot 10^{11} \text{ см}^{-2}$) [24]. Видно, что концентрация потенциальных центров образования частиц таллия удовлетворительно совпадает с числом частиц, установленным по данным электронной микроскопии.

Полученные в настоящей работе и ранее [10, 15, 18, 23] данные свидетельствуют, прежде всего, о том, что основными продуктами фотолиза TIN₃(A) в условиях высокого вакуума являются металлический таллий и газообразный азот. Причем, продукты фотолиза TIN₃(A) образуются в стехиометрическом соотношении и, в основном, на поверхности образцов, а наблюдаемые в результате облучения изменения на кинетических кривых и кривых спектрального распределения V_{Φ} и i_{Φ} обусловлены образованием частиц таллия. Для выяснения механизма влияния таллия на фотолиз TIN₃(A) были измерены вольтамперные характеристики (BAX), U_{Φ} систем TIN₃(A) ТІ (продукт фотолиза) и КРП.

Из анализа ВАХ и результатов измерений КРП (таблица) было установлено, что в области контакта TIN₃(A) — ТI (из-за несоответствия между работами выхода из контактирующих партнеров) возникает запорный электрический слой, контакт TIN₃(A) — ТI проявляет выпрямляющие свойства.

Полярность U_{Φ} (рисунок 2), оставаясь неизменной по всему спектру, соответствует

положительному знаку со стороны азида таллия, а кривые спектрального распределения U_{Φ} , V_{Φ} , i_{Φ} коррелируют друг с другом. Генерация U_{Φ} прямо свидетельствует о формировании в процессе фотолиза TIN₃(A) микрогетерогенных систем TIN₃(A) - TI, темновые и фотопроцессы на границе раздела которых обеспечивают увеличение V_{Φ} и i_{Φ} в собственной области поглощения азида таллия (рисунок 1, 2), а также появление новой длинноволновой области фоточувствительности (рисунок 2). На рисунке 3 приведена диаграмма энергетических зон контакта TIN₃(A) – TI, при построении которой использованы результаты измерений КРП, ВАХ, данные по спектральному распределению U_{Φ} , V_{Φ} и i_{Φ} , а также результаты измерений внешнего фотоэффекта. При воздействии света из области собственного поглощения азида таллия имеет место интенсивная генерация электрондырочных пар в азиде таллия (рисунок 3, переход 1) $N_3 \to N_3^0 + e$.

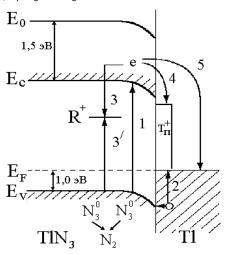


Рисунок 3. Диаграмма энергетических зон гетеросистемы $TIN_3(A) - TI$, E_V – уровень потолка валентной зоны, E_C – уровень дна зоны проводимости, E_F – уровень Ферми, E_O – уровень вакуума, R – центр рекомбинации

Так как квантовый выход фотолиза, оцененный по начальному участку кинетической кривой V_{Φ} (при т = 60 c), составляет 2,7·10⁻³, часть генерированных носителей заряда рекомбинирует (рисунок 3, переходы 3)

$$R^{\dagger} + e \rightarrow R^{0} + p \rightarrow R^{\dagger}$$

где R^+ – центр рекомбинации, а также перераспределяются в контактном поле, сформированном из-за несоответствия между термоэлектронными работами выхода азида таллия и фотолитического таллия и наличием собственных поверхностных электронных состояний (СПЭС) [19], с переходом

неравновесных электронов из зоны проводимости азида таллия на уровни СПЭС (T_n^+) или непосредственно в металл (TI^+) (рисунок 3, переходы 4, 5) T_n^+ + $e \to T_n^0$, TI^+ + $e \to TI^0$. Концентрация дырок в области пространственного заряда азида таллия по сравнению с концентрацией их в необлученном азиде будет возрастать. Возрастание концентрации дырок в области пространственного заряда азида таллия приводит к соответствующему толиза АТМ реакциям образования азота:

 $p + V_{\kappa} \rightarrow V_{\kappa}^{0} + p \rightarrow V_{\kappa}^{+} \rightarrow 3N_{2} + 2 V_{a}^{+} + V_{\kappa},$ где V_a^+ и V_κ^- – анионная и катионная вакан-

При фотолизе азида таллия одновременно с выделением азота образуется и фотолитический таллий. Формирование частиц фотолитического таллия, по нашему мнению, происходит с участием СПЭС

$$T_n^0 + TI^+ \rightarrow (T_n TI)^+ + e \rightarrow ... \rightarrow (T_n TI_m)^+.$$

Наблюдаемое уменьшение V_{Φ} на начальном участке (I) кинетических кривых в процессе и после экспонирования образцов подтверждает необратимый расход поверхностных центров. В процессе роста частиц фотолитического таллия формируются микрогетерогенные системы азид таллия - таллий (продукт фотолиза).

Генерированные в области пространственного заряда азида таллия пары носителей перераспределяются в контактном поле, сформированном из-за несоответствия между термоэлектронными работами выхода азида таллия и фотолитического таллия, с переходом неравновесных электронов из зоны проводимости $TIN_3(A)$ в металл (рис. 3, переход 5)

$$(T_{\sqcap} \operatorname{TI}_m)^+ + e \rightarrow (T_{\sqcap} \operatorname{TI}_m)^0.$$

Одновременно имеет место фотоэмиссия дырок из фотолитического таллия в валентную зону азида таллия (рисунок 3, переход 2). Эти процессы, во-первых, приводят к возрастанию концентрации дырок и, как следствие, к увеличению $V_{\rm th}$ (участок III); вовторых, могут стимулировать диффузию межузельных ионов таллия к растущим частицам

$$(T_{\Pi} \operatorname{TI}_{m})^{\circ} + \operatorname{TI}^{+} \to (T_{\Pi} \operatorname{TI}_{m+1})^{+}.$$

При этом формируется U_{Φ} положительного знака со стороны азида таллия, которая может способствовать дальнейшему увеличению размеров частиц. При воздействии на системы TIN₃(A) - TI света из длинноволновой области спектра имеет место фотоэмиссия дырок из металла в валентную зону азида таллия (рисунок 3, переход 2), что приводит к появлению U_{Φ} , V_{Φ} и i_{Φ} у предварительно фоторазложенных препаратов в длинноволновой области спектра. Обнаруженные закономерности изменения фотолитическим таллием фоточувствительности азида таллия в длинноволновой области спектра согласуются с изложенным. Действительно, формируется U_{Φ} положительного знака со стороны азида таллия, энергетическое положение длинноволнового порога U_{Φ} , V_{Φ} и i_{Φ} для систем TIN₃(A) - ТІ удовлетворительно совпадает с величиной энергетического барьера для перехода дырок из таллия в валентную зону азида таллия (рисунок 3, переход 2).

Для определения лимитирующей стадии процесса роста частиц фотолитического таллия рассчитали время, в течение которого подвижный ион TI+ диффундирует к нейтральному центру $(T_n \ TI_m)^0$. Среднее время релаксации при диффузионном протекании процесса может быть оценено [25]:

$$\tau_n = e^2 \left(\sigma \cdot a \cdot k_b \cdot T \right)^{-1},$$

 $au_n = e^2 \ (\sigma \ a \cdot k_b \cdot T)^{-1},$ где e- заряд электрона; a- постоянная решетки $TIN_3(A) \ (a(TIN_3(A)) = 6.23 \cdot 10^{-8} \ cm),$ $T = 293 \text{ K}, k_b - \text{постоянная Больцмана}.$

Расчетное значение $\tau_n = 66$ с, константа скорости фотолиза (k^{II}) при этом составляет $k^{\parallel} = 1/\tau_n \approx 1,51 \cdot 10^{-2} \text{ c}^{-1}$. Совпадение констант скорости фотолиза с k^{\parallel} дает основание полагать, что лимитирующей стадией процесса фотолиза TIN₃(A) является диффузия межузельных катионов таллия к нейтральному центру $(T_{\Pi}TI_{m})^{0}$.

Работа поддержана грантом Президента РФ для поддержки ведущих научных школ НШ **–** 20.2003.3.

СПИСОК ЛИТЕРАТУРЫ

- Янг Д. Кинетика разложения твердых веществ. - М.: Мир. 1969. - 263 с.
- Савельев Г. Г., Гаврищенко Ю. В., Захаров Ю. А. // Изв. вузов. Физика. 1968. Т. 71. № 7. C. 2.
- Deb S. K. // Trans. Farad. Soc. 1969. V. 65. P. 3187.
- Evans B. L., Yoffe A. D. // Proc. Roy. Soc. 1959. V. 250. P. 364.
- Verneker V. R. P., Forsylg A. C. // J. Phys. Chem. 1967. V. 72. № 12. P. 3736.
- Jacobs R. W. M., Tompkings F. C., Verneker V. R. P. // J. Phys. Chem. 1962. V. 66. P. 1113.
- 7. Verneker V. R. P. // J. Phys. Chem. 1968. V. 72. № 5. P. 1733.
- Суровой Э. П., Сирик С. М., Бугерко Л. Н. // Химическая физика. 1999. Т. 18. № 2. С.
- 9. Суровой Э. П., Захаров Ю. А., Бугерко и др. // Химия высоких энергий. 1999. Т. 33. № 5. C. 387.

- Суровой Э. П., Шурыгина Л. И., Бугерко Л. Н. // Химическая физика. 2003. Т. 22. № 9. С. 24.
- Суровой Э. П., Бугерко Л. Н., Расматова С. В. // Журн. физ. химии. 2004. Т. 78. № 4. С. 663.
- Суровой Э. П., Сирик С. М., Бугерко Л. Н. // Журн. физ. химии. 2008. Т. 82. № 2. С. 362.
- Суровой Э. П., Бугерко Л. Н., Расматова С. В. // Журн. физ. химии. 2005. Т. 79. № 6. С. 1124
- 14. Суровой Э. П., Сирик С. М., Бугерко Л. Н. // Хим. физика. 2000. Т. 19. № 8. С. 20.
- 15. Власов А. П., Суровой Э. П. // Журн. физ. химии. 1991. Т. 65. № 6. С. 1465.
- Суровой Э. П., Сирик С. М., Бугерко Л. Н. // Журн. физ. химии. 2000. Т. 74. № 5. С. 927.
- 17. Суровой Э. П., Бугерко Л. Н., Расматова С. В. // Журн. физ. химии. 2006. Т. 80. № 7. С. 1308.
- 18. Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. // Хим. физика. 2001. Т. 20. № 12. С. 15.
- 19. Суровой Э. П., Бугерко Л. Н. // Хим. физи-

- ка. 2002. Т. 21. № 7. С. 74.
- Суровой Э. П., Бугерко Л. Н., Захаров Ю. А. и др. // Материаловедение. 2002. № 9. С. 27.
- 21. Турова А. И., Адушев Г. П., Суровой Э. П. и др. А.с. 1325332 СССР. // Б.И. 1987. № 27
- 22. Суровой Э. П., Сирик С. М., Бугерко Л.Н. // Материаловедение. 2006. № 3. С. 17.
- 23. Суровой Э. П., Титов И. В., Бугерко Л. Н. // Материаловедение. 2005. № 7. С. 15.
- 24. Розовский А.Я. Гетерогенные химические реакции. Кинетика и механизм. М.: Наука. 1980. - 264 с.
- 25. Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения. М.: Наука. 1972. 399 с.
- 26. Evans B.L., Joffe A.D., Grey P. // Chem. Rev. 1959. V. 59. № 4. P. 519.
- Бродский А.М., Гуревич Ю.Я. Теория электронной эмиссии из металлов. М.: Наука. 1973. - 256 с.

ПОЛУЧЕНИЕ НАНОКРИСТАЛЛИЧЕСКИХ ЧАСТИЦ Agi ИЗ ВОДНЫХ РАСТВОРОВ

Б.А. Сечкарев, Ф.В. Титов, Д.В. Дягилев, У.В. Шараева, А.А. Владимиров

В работе исследовано влияния температуры кристаллизации и концентрации галогенид ионов на размер получаемых наночастиц AgI, образованных в вводно-желатиновом растворе, в процессе реакции растворов их солей. Изучено влияние положения экситонного пика оптического поглощения на размер образующихся частиц иодида серебра. Показано, что увеличение размера наночастиц приводит к постепенному сдвигу пика в длинноволновую область. Установлено, что для частиц с размером свыше 150 нм характерен экситонный пик объемных кристаллов.

ВВЕДЕНИЕ

Получение частиц в нанокристаллическом состоянии различных химических соединений и изучение физико-химических свойств, одна из основных задача современного материаловедения. Для этих целей в последние время применяют способы получения в коллоидных системах, например химическое осаждение из водных растворов, обратные микроэмульсионные системы [1, 2].

Настоящая работа посвящена изучению влияния основных параметров кристаллизации на размер и оптические свойства полу-

чаемых частиц Agl из водных растворов. Среди галогенидов серебра Agl единственное полиморфное соединение. При осаждении из растворов в избытке ионов Ag⁺ получаются, преимущественно кристаллы, с гранецентрированной кубической решеткой, а в избытке ионов I⁻, преимущественно, с гексагональной решеткой. Кроме того, ряд экспериментальных данных свидетельствует, что существование той или иной решетки связанно с наличием структурных фазовых переходов для малых частиц [3]. Так, в зависимости от размера частицы Agl имеют разную (гексагональную при r<20 nm и кубическую при г>30 nm) структуру.