ПРОБЛЕМЫ ЭКОАНАЛИТИЧЕСКОГО КОНТРОЛЯ КРУПНЫХ РЕК (НА ПРИМЕРЕ Р. ОБЬ)

А.Н. Эйрих, С.С. Эйрих, Т.С. Папина, Т.Г. Серых, Е.И. Третьякова

Особенности и проблемы экоаналитического контроля на крупных водотоках в условиях негомогенности водной среды изучены на примере р. Обь в районе г. Барнаула в 2005-2007 гг. Предложены и апробированы подходы к отбору репрезентативной пробы при определении в ней микроэлементов. Рассмотрены факторы, влияющие на качество аналитических данных при отборе и хранении проб природных вод. Проведено изучение распределения микроэлементного состава по компонентам водного потока р. Обь в районе г. Барнаула.

ВВЕДЕНИЕ

Изучение растворенных и взвешенных форм микроэлементов, а также процессов накопления металлов в верхних слоях донных отложений и поступления их в поровую воду является важным аспектом при экологических исследованиях речных экосистем.

Основные правила отбора проб при исследовании водного объекта изложены в нормативных документах в области государственного контроля качества воды [ГОСТ 17.1.5.01-80; ГОСТ 17.1.5.05-85; ГОСТ Р 51592-2000].

Общие принципы отбора проб, изложенные в перечисленных выше нормативных документах, сводятся к следующим положениям:

- 1. Отобранная проба должна быть репрезентативной, т.е. типичной для всего исследуемого объекта;
- 2. Отбор пробы, хранение, транспортировка и работа с ней должны проводиться так, чтобы не произошло изменений в содержании определяемых компонентов или в свойствах воды в течение времени, отделяющего момент отбора пробы от ее анализа:
- 3. Выбор способа консервирования пробы и ее объем должны производиться с учетом используемого метода лабораторного анализа;
- 4. Все условия отбора пробы должны четко документироваться.

Ошибки, допущенные на начальных стадиях контроля не исправляются последующими стадиями, а только суммируются при переходе от предыдущей стадии к последующим. При эко-аналитическом контроле водных объектов необходимо уделять большое внимание вопросам отбора репрезентативной (представительной) пробы и интерпретации полученных результатов. Получение репрезентативной пробы на крупных водотоках представляет серьезную проблему. Для крупных равнинных рек вследствие раз-ПОЛЗУНОВСКИЙ ВЕСТНИК № 1-2 2008

ности скоростей течения и силы гравитации содержание микроэлементов в воде в створах сечения достигает размах варьирования в десятки раз. В связи с этим, возникает трудность при оценке средней концентрации микроэлементов в точке отбора. Особенности репрезентативного пробоотбора подробно рассмотрены в работе [1].

Целью нашей работы являлось изучение распределения микроэлементов в воде р. Обь с учетом особенностей отбора репрезентативной пробы в условиях негомогенности водной среды, а также выявление определяющих факторов, влияющих на качество аналитических данных при отборе и хранении проб природных вод. Исследования проводились в 2005-2007 гг.

Объекты и методы исследований. Для изучения содержания микроэлементов (As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) в воде, в первую очередь, была обоснована и выбрана схема контрольных точек наблюдения на участке р. Обь у г. Барнаула (Рис. 1). Выбор створов наблюдения основывался на следующих принципах: 1) круглогодичное нахождение всех точек отбора проб в русле потока (т.е. точки отбора проб донных отложений и поровой воды даже в меженный период должны быть покрыты слоем воды); 2) мониторинговая сеть отбора проб должна включать створы, не испытывающие заметного влияния города (створ 1, 2), испытывающие максимальное влияние города (створ 3, 4) и испытывающие остаточное влияние города (створы 5, 6); 3) для безопасности отбора проб максимальная скорость потока воды в местах отбора проб не должна превышать 1 м/сек. Последовательность работ на выбранных контрольных точках наблюдения состояла в следующем: в фиксированных точках реки, координаты которых при каждом отборе отслеживались с помощью спутниковой навигационной системы GPS-12, проводили сначала отбор проб воды и взвешенного вещества, а затем верхнего ненарушенного

10-ти сантиметрового слоя донных отложений.

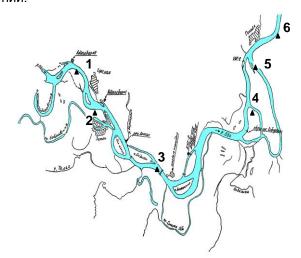
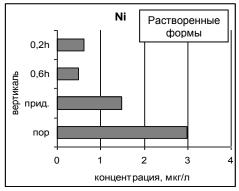


Рис. 1. Карта - схема отбора проб на р. Обь в районе г. Барнаула:

Точка 1 - лев. берег, водозабор № 2 Точка 2 - прав. берег, водозабор № 1 Точка 3 - лев. берег, перед ж/д мостом


Точка 4 - прав. берег, о. Рыбацкий, ниже г. Барнаула Точка 5 - прав. берег, выход из протоки Федуловская

Точка 6 - лев. берег, Верх. Логовской

На месте отбора проводили измерение температуры, pH и Eh воды (поверхностной и поровой воды донных отложений), все последующие определения и исследования проводили в лабораторных условиях согласно существующим методикам [2, 3]. Сразу после доставки в лабораторию пробы воды для отделения взвешенных веществ фильтровали под давлением аргона через мембранный фильтр с диаметром пор 0.45 мкм, и отдельно анализировали фильтрат и взвешенное вещество. Пробы донных отложений использовались для изучения распределения химических веществ в изучаемой системе ДО поровый раствор. Концентрации металлов определяли методом атомно-абсорбционной спектрометрии с использованием пламенного варианта атомизации (ацетилен - воздух) и электротермической атомизации (ЭТА), на приборе SOLAAR M-6, для калибровок прибора использовали стандартные растворы ГСО. Контроль правильности определений проводили с помощью метода добавок.

Обсуждение результатов. Для оценки качества водных экосистем необходимо учитывать характер распределения концентраций загрязняющих веществ в толще воды. Так, в придонных слоях водоемов, на поверхности, а также в остальной массе воды концентрации элементов могут значительно отличаться и для растворенных, и, особенно, 158

для взвешенных форм. Для получения представительной пробы в каждой точке отбора был проведен отбор проб воды в трех сегментах створа (0,2h; 0,6h; 0,8h). Распределение металлов по вертикальной составляющей реки показывает значительную неравномерность. Рисунок 2 иллюстрирует неравномерность распределения форм металлов в одном из створов на примере никеля.

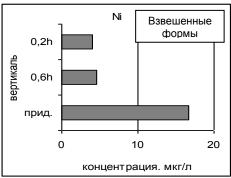


Рис. 2. Вертикальное распределение растворенных и взвешенных форм никеля в пробах воды р. Обь

Разность концентраций растворенных форм металлов в одной и той же точке отбора обычно составляет 1,5-3 раза. Концентрации взвешенных форм металлов в различных сегментах створа могут отличаться в 10 раз и более.

Методическая сложность работы состояла не только в отборе репрезентативной пробы воды, но и отборе поровой воды из донных отложений и сохранения ее в первоначальном состоянии. Так, было показано, что после отбора пробы донных отложений с восстановительными Eh условиями происходит ее окисление на воздухе за считанные минуты (в плотно закрывающихся сосудах за считанные часы). Для предотвращения перераспределения тяжелых металлов, минеральных и органических веществ между донными отложениями и поровым раствором было предложено сразу после отбора пробу

ПОЛЗУНОВСКИЙ ВЕСТНИК № 1-2 2008

донных отложений помещать в сосуд, заполненный инертным газом (аргон), и все процедуры по отделению поровой воды от твердой составляющей ДО по возможности, проводить в инертной атмосфере. Изменения концентраций химических компонентов в поровой воде ДО в зависимости от условий хранения проб: с аргоном и без него представлены на рис. 3.

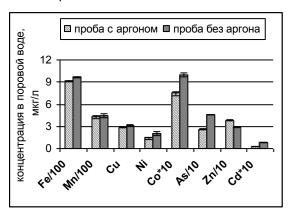


Рис. 3. Изменение концентраций микроэлементов в поровой воде в зависимости от условий хранения пробы ДО

Поскольку верхний слой донных отложений (0-10 см) активно участвует в обменных процессах с поровыми и придонными водами, а в зависимости от гидрологического сезона в нем могут преобладать либо окислительные, либо восстановительные условия, то для получения репрезентативных данных необходим отбор 3-5 параллельных проб ДО, а также измерение pH и Eh и концентрации растворенного органического вещества на месте отбора в каждой пробе поровой воды. Изменение окислительно-восстановительных условий и значения рН, а также концентрация растворенного органического вещества, согласно литературным данным [4, 5], являются основными движущими силами, влияющими на миграционную подвижность металлов и их способность к обмену между донными отложениями и водой.

Пример влияния изменения окислительно-восстановительных условий на мобильность металлов в ДО представлен на рис. 4. Изменение окислительных условий на восстановительные снижает подвижность типичных халькофильных металлов, т.е. они меньше поступают из ДО в поровую воду, в то время как мобильность Мn и Fe повышается.

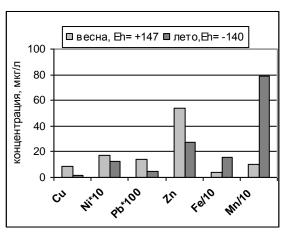


Рис. 4. Влияние сезонного изменения окислительно-восстановительных условий в точке отбора на поступление металлов из ДО в поровую воду.

Для оценки загрязненности поверхностного слоя воды р. Обь в районе г. Барнаула средние значения содержания растворенных форм микроэлементов сравнивались с предельно-допустимыми нормативными значениями. В таблице 1 приведены средние значения для 3 (из 5 изученных) створов для различных гидрологических периодов 2007 г. Как показали наши исследования, превышения ПДК_в для микроэлементов (As, Cd, Co,Cu Fe, Pb, Ni, Zn) в пробах воды поверхностного слоя не наблюдается. Среди определяемых элементов превышение ПДК_в наблюдалось только по содержанию Мп в 3 точке отбора (р. Обь, перед ж.д. мостом) в весенний и осенний периоды. Однако, было зарегистрировано превышение ПДК во по Fe (3, 5 точки отбора); по Cu повсеместно во всех точках отбора в весенне-летне-осенний периоды; Мп (весна, осень), Zn (весна, лето) в точке 3.

Таблица 1. Среднее содержание растворенных форм микроэлементов в поверхностной воде р. Обы в районе г. Барнаула, 2007 г., мкг/л

эле-	ПДК₅	ПДК _{в.р.}	T.1		T.3			T.5		
мент			весна	лето	весна	лето	осень	весна	лето	осень
As	50	53	1,08	0,63	1,07	1,58	1,73	1,14	1,08	1,14
Cd	1	5	<0,03	< 0,03	< 0,03	< 0,03	< 0,03	<0,03	<0,03	< 0,03
Co	100	10	< 0,1	0,13	<0,1	0,15	<0,1	< 0,1	0,15	<0,1
Cu	1000	1	5,02	1,4	6,83	1,38	2,41	2,91	1,92	2,52
Fe	300	100	45,0	20,3	60,7	95,8	108	34,2	80,3	103
Mn	100	10	5,99	3,69	13,3	11,0	458	5,36	3,56	23,5
Ni	100	10	0,76	1,88	0,86	3,8	0,56	0,47	2,22	0,28
Pb	30	10	0,1	0,59	0,56	<0,1	0,1	<0,1	< 0,1	0,1
Zn	1000	10	5,47	18,7	69,7	16,4	<1,0	1,13	9,1	<1,0

Огромную роль в миграции элементов играют взвешенные вещества [6]. Сущест-

венная доля ТМ (Со, Сu, Fe, Mn, Ni, Zn) в р. Обь переносится в составе взвешенных веществ. Изменения химического состава воды и баланс растворенных и взвешенных форм микроэлементов во времени и пространстве зависят от гидрологических и внутриводоемных процессов. По данным наших исследований отмечено, что в осенний период в точке 3 (р. Обь, перед ж.д. мостом), находящейся в черте города, наблюдается увеличение содержания большинства микроэлементов (Fe, Mn, Cu, Ni, Co, As, Pb, Cd) во ВВ (рис.6).

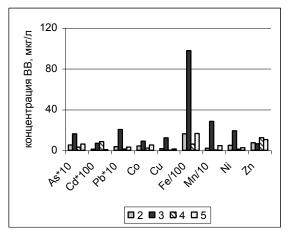


Рис. 5. Пространственное распределение взвешенных форм микроэлементов воде р. Обь в районе г. Барнаула, осень 2007 г.

Результаты анализа свидетельствуют, что повышенное содержание микроэлементов поверхностной воды в весенне-летнеосенний периоды по целому ряду показателей (Fe, Cu, Mn, Zn) наблюдалось в точке 3, находящейся в черте города. Повышенное содержание растворенных и взвешенных форм микроэлементов в воде связано с поступлением загрязняющих веществ с бытовыми и промышленными стоками города.

Выводы.

1.При изучении микроэлементного состава вод крупных равнинных рек в случае негомогенности распределения определяемого ингредиента в потоке необходимо проводить отбор репрезентативной пробы, учитывая вклад мгновенного расхода каждого участка (сегмента) створа в общий объем расхода воды в каждом сегменте створа.

2.Для получения репрезентативных данных необходим отбор 3-5 параллельных проб ДО, а также измерение pH и Eh на месте отбора в каждой пробе поровой воды.

3.Для предотвращения изменений в содержании определяемых компонентов при хранении проб поровой воды предложено использовать аргон и все процедуры по отделению поровой воды от ДО проводить также в инертной атмосфере.

4.Для понимания механизма обмена веществ в системе вода — поровый раствор — ДО необходимо четкое отслеживание параметров, влияющих на равновесие в системе (окислительно-восстановительные условия, значения рН, концентрация растворенного органического вещества).

5.Повышенное содержание растворенных и взвешенных форм микроэлементов в черте г. Барнаула связано с поступлением загрязняющих веществ с бытовыми и промышленными стоками города.

ЛИТЕРАТУРА

1.Папина Т.С. Отбор проб, как важная составляющая экоаналитического контроля речных экосистем// Экологическая химия. 2004, №4, с. 229-235.

 $2.\Pi$ НД Ф 14.1:2:4.139-98. Количественный химический анализ вод. — M,1998. (издание 2004 г.)

3.ПНД Ф 14.1:2:4.140-98. Количественный химический анализ вод. – М., 1998.

4.Forstner U. Non-linear release of metal from aquatic sediments// Biogeodynamics of pollutants in solids and sediments. (Eds. W.Salomons and W.M.Stigliani), Berlin, Springer-Verlag, 1995, p. 247-307.

5.Папина Т.С. Транспорт и особенности распределения тяжелых металлов в речных экосистемах // серия «Экология», вып.62, Новосибирск, 2001. – 58 с.

6.Мур Дж.В., Рамамурти С. Тяжелые металлы в природных водах// М.Мир. 1987. - 140 с.