СОСТАВ ПРОДУКТОВ И МЕХАНИЗМ ПРОЦЕССА ОКИСЛЕНИЯ АМОРФНОГО КРАСНОГО ФОСФОРА КИСЛОРОДОМ И ПАРАМИ ВОДЫ

В.М. Винокуров, А.В. Домин, В.А. Курочкин

В настоящей работе изучен состав продуктов окисления аморфного красного фосфора кислородом и парами воды при различных условиях и кинетика их образования. Исходя из экспериментальных результатов, представленных в работе, а также современных представлений о микроструктуре аморфных веществ и характере дефектов в них предлагается механизм вышеназванного процесса.

Введение

В последние годы выполнен ряд оригинальных исследований, посвященных изучению кинетических закономерностей процесса окисления красного фосфора ($P_{\kappa p}$) кислородом и парами воды [1]. Однако, для прогнозирования поведения $P_{\kappa p}$ в качестве реагента или компонента изделий различного назначения [2], очень важно оценить физикохимическую сущность механизма процессов, протекающих при его взаимодействии с различными веществами, в том числе с компонентами атмосферных газов: кислородом и парами воды.

Экспериментальная часть

В настоящей работе исследован состав продуктов окисления красного фосфора кислородом и парами воды в условиях, близких к естественным с целью оценки поведения изделий из него под воздействием внешних условий. На основе полученных результатов нами предлагается следующая интерпретация механизма процесса, учитывающая микроструктурные особенности аморфного красного фосфора.

В результате взаимодействия красного фосфора с кислородом и парами воды, как установлено многочисленными исследованиями, образуются три кислородных кислоты фосфора и фосфин. Строение этих соединений позволяет сделать вывод о том, что рассматриваемый процесс имеет очень сложный характер, сопровождающийся реакциями самовосстановления и самоокисления.

Элементы пятой группы таблицы Менделеева имеют неподеленную пару электронов на внешних орбитах. Это обуславливает очень широкий спектр соединений, которые они могут образовывать, вступая во взаимодействие с различными веществами. Эта способность элементов пятой группы убывает с увеличением их атомной массы (№Р <As<Ab). Но наличие у фосфора незанятых электронами d – орбиталий, в отличие от азо-

та, дает ему возможность образовывать очень многочисленные соединения с различными веществами, разнообразие которых уступает лишь химии углерода.

В частности, рассмотрим продукты взаимодействия $P_{\kappa p}$ с кислородом и парами воды. Как показано в ходе ряда исследований, вода выступает в процессе окисления $P_{\kappa p}$ именно как реагент, а не компонент взаимодействия окислов фосфора, приводящий к образованию кислородных кислот фосфора, вследствие их гидратации. Это утверждение позволяет объяснить сложный набор продуктов окисления красного фосфора, имеющих различную степень окисления.

С точки зрения электроотрицательности химических элементов, фосфор, находящийся в середине таблицы Менделеева и имеющий на внешних орбиталях пять электронов может в различных соединениях может выступать и электронодонором и электроноакцептором. При этом, в отличие от большинства других элементов, за исключением углерода, он может в одном соединении выступать в обоих качествах.

Рассмотрим молекулярную структуру кислородных кислот фосфора и фосфина.

Используя понятие электроотрицательности, формально мы можем считать, что в H_3PO_4 фосфор имеет степень окисления + 5, в H_3PO_3 - + 3, в H_3PO_2 - + 1, в PH_3 – "-" 3. При этом мы считаем, что кислород стягивает на себя электронную плотность фосфор, а водород наоборот — отдает.

Ниже мы будем вышеназванные соединения обозначать как фосфор соответствующей степени окисления P⁵⁺, P³⁺, P¹⁺, P⁻³. При этом экспериментальный материал представлен в виде доли фосфора, перешедшего в соответствующий продукт.

Состав продуктов окисления $P_{\kappa p}$ при различных значениях внешних условий представлен в таблице.

Аналитическое определение веществ, образующихся в ходе окисления $P_{\kappa p}$ кислородных кислот фосфора и фосфина изложен в работе [3].

T, ℃	Р _{н2О} , кПа	Р ₀₂ , кПа	Средняя доля фосфора соответствующей			
			степени окисления ($\overline{lpha_i}$)			
			P ⁵⁺	P ³⁺	P ¹⁺	P ³⁻
40	1,3	20,6	0,287	0,475	0,158	0,080
40	7,0	20,6	0,245	0,487	0,183	0,085
40	3,0	4,5	0,265	0,470	0,193	0,072
40	3,0	98,0	0,343	0,427	0,152	0,078
30	3,0	23,6	0,280	0,375	0,178	0,067
50	3.0	20.6	0.303	0.495	0.138	0.068

Результаты и их обсуждение

В настоящей работе на основании микроструктуры аморфных материалов пятой группы [4] и состава продуктов окисления $P_{\kappa p}$ предложен механизм процесса, учитывающий многие его особенности.

Для аморфного красного фосфора характерны два типа дефектных состояний: оборванные связи и экситонные пары pP_2 и spP_4^+ , имеющие координацию соответственно два и 4, образующиеся при взаимодействии оборванной связи с неподеленной парой соседнего атома[5].

В пользу этого утверждения наиболее ярко говорит наличие Ркр сигналов как темнового сигнала электронопарамагнитного ресигнала зонанса. так и оптически детектируемого парамагнитного резонанса. эффект Последний наблюдается рекомбинации пар заряженных дефектов с образованием оборванных связей (неспаренных электронов).

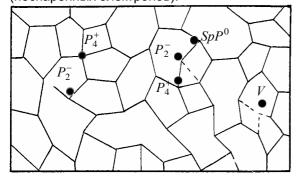
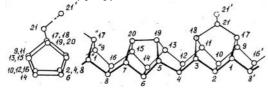


Рисунок 1 – Характер дефектов в аморфных пниктидах

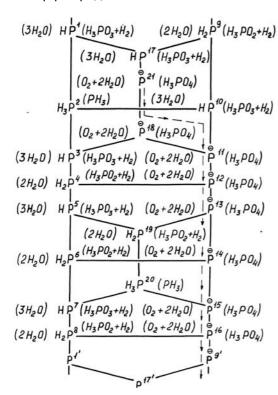
Исходя из характера связей, на поверхности $P_{\kappa p}$ будет локализоваться отрицательный дефект pP_2 , имеющий избыток электронов. В силу этого он будет сорбировать молекулярный кислород, который является сильным их акцептором, при этом электронная плотность на связях дефектного атома со своими соседями уменьшится и они легко могут быть атакованы молекулами воды, являющимися электронодонорами.

В результате дефектный атом фосфора превращается в молекулу фосфорной кислоты, один из его соседей присоединяет атом водорода, а другой — электрон, превращаясь в исходный дефект pP_2 по схеме:

Если электрон переходит на атом фосфора, который ранее присоединял атом водорода, то в дальнейшем этот дефект превращается в фосфористую кислоту по схеме:


$$H - P^- + O_2 + H_2O \longrightarrow H_3PO_3 + P^-$$

Однако эти схемы не объясняют наличие в продуктах окисления фосфорноватистой кислоты (H_3PO_2) фосфина (PH_3) и небольших количеств водорода. Следовательно, необходимо допустить существование других направлений процесса взаимодействия $P_{\kappa p}$ с кислородом и парами воды. В част-


СОСТАВ ПРОДУКТОВ И МЕХАНИЗМ ПРОЦЕССА ОКИСЛЕНИЯ КРАСНОГО ФОСФОРА КИСЛОРОДОМ И ПАРАМИ ВОДЫ

ности, прямое взаимодействие атомов фосфора, ранее присоединивших кислород с молекулами воды по схеме:

Исходя из результатов работ многих авторов, следует, что в аморфном красном фосфоре, полученном при различных условиях в разной степени сохраняются элементы структуры кристаллического фосфора Гитторфа, а именно пентагональные трубки. На схеме [6] приведен характер связей в элементе этой структуры.

Суммарный итог процесса окисления двух ячеек пентагональные трубки фосфора Гитторфа представлен на схеме:

Первая ячейка, начинающаяся с атом 17, окисляется по схеме 3 и 4 приведенным выше, вторая по схеме 1 и 2, начиная с атома 21. Принимая в качестве первого приближения равенство вероятностей протекания процесса по обоим маршрутам при окислении двух ячеек пентагональной трубки, получим следующие соотношение продуктов реакций: $P^{5+}: P^{3+}: P^{1+}: P^{3-} = 0,20:0,45:0,26:0,09,$ что хорошо согласуется с экспериментально полученными результатами. $P^{5+}: P^{3+}: P^{1+}: P^{3-} = 0,275:0,47:0,172:0,085.$

Естественно, исходя из разнообразия химии фосфора, нельзя беспрекословно утверждать, что предлагаемые схемы абсолют-

но верны и единственно возможны.

Однако высокая вероятность их реализации подтверждается увеличением количества продуктов с более высокой степенью окисления (H_3PO_4 и H_3PO_3) с повышением температуры процесса и содержания кислорода в газовой фазе.

Заключение

Предлагаемы механизм окисления красного фосфора кислородом и парами воды позволяет объяснить широкий спектр продуктов исследуемого процесса и влияние на него внешних условий. В отличие от стандартных схем химических взаимодействий фосфора с другими веществами, он учитывает микроструктурные особенности твердой фазы. В связи с этим хотелось бы подчеркнуть, что при описании гетерогенных процессов газтвердое тело очень важно учитывать микроструктурные особенности твердой фазы.

ЛИТЕРАТУРА

- 1. Таланов Н.Д., Сперанская Г.В., Степанов Л.Г. Окисление элементарного красного фосфора в присутствии соединений меди // НИИУИФ, 1968. Вып. 209. С. 159-162.
- 2. Практикум по химии полупроводников / Под ред. Я.А. Угая. М.: Высш. шк., 1978. 191 с.
- 3. Уильямс У.Дж. Определение анионов: Справочник. Пер. с англ. М.: Химия, 1982 624 с.
- 4. Аморфные полупроводники / Под ред. М. Бродский. М.: Мир, 1983. 419 с.
- 5. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир, 1982. Т.2. 658 с.
- 6. Кребс Г. Кристаллохимия неорганических соединений М.: Мир, 1971. 312 с.