где V – объем рапы, M^3 ; S – поверхность водного зеркала M^2 .

При испарении воды концентрация солей в рапе повышается, тогда отношение концентрации невыпадающего компонента в сгущенной рапе к исходной будет характеризовать кратность сгущения:

$$\mu = \frac{e \cdot \rho}{e_0 \cdot \rho_0},$$

где е, е₀ — концентрация невыпадающего компонента в сгущенной и исходной рапе, % мас.; ρ , ρ ₀ — плотность рапы сгущенной и исходной, г/см³.

Более удобно пользоваться для характеристики состояния системы коэффициентом кратности солевого сгущения рапы Δ C, т. к. в этом случае отсчет ведется от нуля. Величины μ и Δ C безразмерны и связаны уравнением:

$$\Delta C = \mu - 1$$
 , или $\Delta C = \frac{e \cdot \rho - e_0 \cdot \rho_0}{e_0 \cdot \rho_0}$.

Сравнение гидрохимических данных за 1960 и 2005 годы показало, что за этот период ΔC =0,04. Средневзвешенный уровень рапы в 1960 году, с учетом морфометрических параметров озера Кучук [3] составил \overline{H} =2,08 м. Учитывая, что уровень рапы озера, ее концентрация, плотность, соотношение компонентов и другие параметры водносолевой системы подвержены изменениям, мы сравнили данные 1960 года с 2001 годом, когда уровень рапы был самым низким за наблюдаемый период. Величина ΔC =0,17.

Анализируя полученные величины и сравнивая их с результатами исследований других озер Кулундинской низменности [7] можно сделать вывод, что озеро находится на политермической стадии развития, для которой $\Delta C < 0,4$.

По данным В.Г. Эдигера регулярная кристаллизация солей для условий соляноозерной степи Кулундинской низменности проис-

ходит при коэффициенте кратности сгущения ∆С≥0,4. При меньших значениях ∆С преобладают процессы политермической кристаллизации и только иногда изотермической.

При коэффициенте кратности сгущения рапы ΔC =0,4 уровневый режим самосадочных озер находится в пределах 0,65-1,3 м.

Таким образом, озеро Кучук в настоящее время находится в начальной стадии смешанного цикла эволюционного развития, а периодически возникающая кристаллизация галита при данных параметрах, характеризующих его гидрохимический режим, не может рассматриваться как начало формирования устойчивого покровного слоя изолирующего линзу мирабилита-стеклеца и не позволяющего извлекать сульфат натрия из рапы существующим способом.

ЛИТЕРАТУРЫ

- 1. Никольская Ю. П. Процессы солеобразования в озерах и водах Кулундинской степи. Новосибирск: Изд-во СО АН СССР, 1961. с. 186.
- 2. Валяшко М. Г. Закономерности формирования месторождений солей. М.: Изд-во Московского ун-та, 1962. С. 397.
- 3. Производство сульфата натрия из рассолов озера Кучук / Под ред. Е. Е. Фроловского. СПб.: Изд-во С.-Петерб ун-та, 2001 с. 444.
- 4. Букштейн В.М. Изменение химического состава рапы озера Кучук в многолетнем цикле. // Тр. ин-та / ВНИИГ. 1944. Вып. 21. с. 243-253.
- 5. Пашинин Н.И., Эдигер В.Г. Гидрохимический режим минеральных озер Кулундинской низменности. // Тр. ин-та / Алт. политехн. институт им. И. И. Ползунова. 1976. Вып. 57. с. 32-59.
- 6. Эдигер В.Г. Метод параметрических коэффициентов для решения задач химической технологии. // Тр. ин-та / Алт. политехн. институт им. И. Ползунова. 1970. Вып. 8. с. 128 141.
- 7. Эдигер В.Г. Закономерности формирования самосадочного озера. // Тр. ин-та / Геологический институт. 1971. Вып. 32. с. 49-67.

МИКРОЭЛЕМЕНТЫ В РАСТЕНИЯХ СЕВЕРНОГО АЛТАЯ

С.С. Мешкинова, О.А. Ельчининова, Е.В. Шаховцева

В статье исследован элементный химический состав растений Северного Алтая на содержание Си, Мп, Zn, Pb, Cd, Cr, Sb, As и Hg. Выявлено, что концентрация исследованных химических элементов в растениях Северного Алтая находится в пределах фоновых значений и укладываются в диапазон нормального функционирования растений.

Растительность, играя роль промежуточного резервуара, через который микро- $\Pi O J S V H O B C K U M B E C T H U K No. 2 2006$

элементы переходят из почв, а частично из воды и воздуха в человека и животных, явля-

ется важнейшим компонентом биосферы, причем компонентом сложным и динамичным.

Химический состав растений зависит от двух главных факторов - генетического и экологического. Генетический фактор лежит в основе формирования химического состава растений и регулирует потребности в определенных химических элементах отдельных групп растений (семейств, родов), поэтому содержание в растениях химических элементов «для каждого организма есть видовой признак» [1], что справедливо для фоновых территорий. Экологический же фактор мешает реализации генотипической программы поглощения химических элементов растениями [2], особенно в тех случаях, когда среда обитания обогащена соединениями этих элементов. Последнее возможно как при природном, так и техногенном загрязнении.

Химические элементы в растениях выполняют определенные функции в физиологических процессах. Все элементы делятся на макро-, микро- и ультрамикроэлементы. Если для биогенных элементов (N, P, K, Ca, Mg, Mn и др.) Диапазон приемлемых концентраций в среде обитания растений очень широк, то для микро- и ультрамикроэлементов (Cu, Zn, Co, Cd, Pb, Hg), относящихся преимущественно к группе тяжелых металлов, оптимальный, или безвредный, интервал

концентрации очень узок. Выявлены закономерности накопления многих активных веществ в растении в процессе его развития, в различных его органах, в зависимости от условий произрастания и экологической природы вида. Часто высшие растения без какихлибо морфологических изменений могут содержать опасные для животных и человека концентрации химических элементов. В растениях северного алтая было определено содержание Cu, Mn, Zn, Pb, Cd, Hg, и As.

Медь. В зависимости от природных условий среднее содержание меди в растениях, по данным М.Я. Школьника [3], колеблется от 6,3 до 8,7 мг/кг сухого вещества. Содержание меди в растениях из незагрязненных регионов разных стран колеблется от 1 до п⋅10 мг/кг сухой массы, редко превышая 20 мг/кг сухой массы [4]. Приводятся сведения о нормальном содержании меди в растениях − 30-40 мг/кг воздушно-сухой массы и предположительно максимальном − 150 мг/кг [5]. Нижние пороговые величины для меди, по В.В. Ковальскому [6], лежат в пределах 3-5 мг/кг.

Концентрация меди в исследованных растениях варьирует в широких пределах (табл. 1, 2), среднее содержание - 7,3 мг/кг. Пониженное содержание элемента обнаружено в растениях сем. Толстянковых (родиола розовая) и в камнеломковых (бадан).

Таблица 1

Содержание тяжелых металлов в растениях в бассейне р. Майма, мг/кг										
Семейство	Русское и латинское на- звание растения	Cu	Zn	Pb	Mn	Cr	Cd	Sb	As	Hg
Grosslariaceae	Смородина черная Ribes nigrum	9,6	34	1,3	33	-	0,008	0,77	0,144	0,0120
Laminaceae	Черноголовка Prunella vulgaris	12,4	56	1,5	82	-	0,009	0,21		0,0072
Cannabaceae	Крапива двудомная Urtica dioica	8,6	21	3,2	94	-	0,005	0,78	0,240	0,022
Polemoniaceae	Синюха голубая Polemonium coeruleum	3,1	29	1,0	43	-	0,028	<0,05	<0,05	0,0180
Asteraceae	Мать-и-мачеха Tussilago farfara	14,7	26	1,2	50	-	0,056	2,6	0,194	0,0120
Plantaginaceae	Подорожник Plantago	10,2	37	2,0	29	-	0,014	0,26	0,288	0,020
Apiaceae	Тмин обыкновенный Carum carvi	3,7	24	<1,0	5	-	0,022	<0,05	0,09	0,036
Laminaceae	Мята Mentha	17,0	48	1,4	45	1,9	0,04	<0,05	<0,05	0,012
Polygonaceae	Горец Polygonum	4,4	28	2,3	74	1,0	0,02	<0,05	<0,05	0,016
Rosaceae	Ежевика Rubes caesius	3,9	19	2,0	112	1,4	0,01	<0,05	<0,05	0,012
Laminaceae	Шалфей Salvia	6,5	15	1,5	60	<0,05	0,01	<0,05	<0,05	0,030
Rosaceae	Лабазник Filipendula ulmaria	9,8	34	1,4	81	1,4	0,07	<0,05	<0,05	0,0072

Примечание. Прочерк – здесь и далее – не определяли

МИКРОЭЛЕМЕНТЫ В РАСТЕНИЯХ СЕВЕРНОГО АЛТАЯ

Марганец. Отмечено, что физиологическое значение марганца для всех живых организмов хорошо изучено [7]. Известно также, что в зависимости от видовой принадлежности и места обитания растения в своей на-

земной части накапливают марганца от единиц до сотен мг/кг сухой массы. Для нормального функционирования организма животных содержание его в растениях должно быть от 20 до 70 мг/кг [8].

Таблица 2

	Содержание тяжелых металло	ов в рас	стения	х в бас	сейне р	. Сема. і	мг/кг	140	олица 2
Семейство	Русское и латинское назва-	Cu	Zn	Pb	Mn	Cd	Sb	As	Hg
Crassulaceae	ние растения Родиола розовая Rodiola rosla	1,4	16	1,2	30	0,016	<0,05	<0,05	0,0086
Poaceae	Кукуруза Zea mays	8,8	12	<1	89	0,020	<0,05	0,228	0,0063
Apiaceae	Володушка козелецелистная Bupleurum scorzonerifolium	4,1	15	<1	27	0,004	<0,05	<0,05	0,0075
Fabaceae	Донник желтый Mililotus officinalis	7,8	18	2,2	69	0,017	6,60	<0,05	0,0078
Paeoniaceae	Пион уклоняющийся Paeonia anomala	3,3	24	2,3	20	0,025	0,038	0,330	0,0082
	Укос с сенокоса	6,5	24	7,2	105	0,028	0,022	0,046	0,0110
Rosaceae	Гравилат Geum	7,3	47	<2,5	49	-	-	-	-
Apiaceae	Репешок Caucalis daucoides	6,3	25	<2,5	27	-	-	-	-
Poaceae	Ежа сборная Dactylis glomerata	2,8	22	<2,5	35	-	-	-	-
Amaranthaceae	Лебеда раскидистая Atriplex patula	6,5	17	<2,5	72	-	-	-	-
Rosaceae	Кровохлебка Sanquisorba officinalis	3,5	13	<2,5	24	-	-	-	-
Ranunculaceae	Водосбор сибирский Aquilegia sibirica	5,5	57	<2,5	31	-	-	-	-
Fabaceae	Горошек мышиный Vicia cracca	4,5	14	<2,5	21	-	-	-	-
Asteraceae	Полынь Сиверса Artemisia Siversiana	13,5	56	<2,5	45	-	-	-	-
Fabaceae	Солодка Hycyrrhiza	12,3	19	<2,5	36	-	-	-	-
Fabaceae	Люцерна желтая Medicago sativa	7,8	17	<2,5	26	-	-	-	-
Asteraceae	Полынь холодная Artemisia frigida	9,0	26	<2,5	28	-	-	-	-
Poaceae	Овес Avena sativa	3,3	14	<2,5	31	-	-	-	-
Asteraceae	Полынь холодная Artemisia frigida	10,0	36	<2,5	73	-	-	-	-
Scrophulariaceae	Вероника Veronica	8,8	36	<2,5	62	-	-	-	-
Fabaceae	Чина Гмелина Lathyrus gmelinii	5,3	23	<2,5	60	-	-	-	-
Rosaceae	Кровохлебка Sanquisorba officinalis	4,3	20	<2,5	140	-	-	-	-
Laminaceae	Чабрец сибирский Thymus sibirica	8,0	22	<2,5	119	-	-	-	-
Asteraceae	Козлобородник сибирский Tragopogon sibiricus	6,0	19	<2,5	44	-	_	-	-
Пределы колебания min		1,4	12	<1	21	0,004	<0,05	0,046	0,0075
max		13,5	57	7,2	140	0,028	6,60	0,330	0,0110
Среднее арифметическое		6,5	24	2,5	53	0,018	1,14	0,130	0,0082

Содержание марганца в исследованных растениях варьирует в довольно широких пределах (табл.1, 2): в бассейне р. Маймы – от 5 до 172 мг/кг, в бассейне р. Семы – от 21 до 140 мг/кг сухого вещества. Минимальные концентрации характерны для представителей семейства Бобовых и Зонтичных, максимальные – для сем. Вересковых и Брусничных. Эти древесные кустарники и полукустарнички относятся к группе манганофилов.

Цинк. В сухом растении цинка от 15 до 150 мг/кг. Максимальное, предположительно, 300 мг/кг воздушно-сухой массы. Содержание цинка при его дефиците оценивается в 10-20 мг/кг.

Основные функции цинка в растениях связаны с метаболизмом углеводов, протеинов и фосфатов, а также с образованием ауксина, ДНК и рибосом. Цинк влияет на проницаемость мембран [4]. В растениях Северного Алтая минимальные и максимальные концентрации цинка различаются примерно в 5 раз, средние значения концентраций элемента практически не различаются (см. табл. 1, 2). Максимальные концентрации отмечены в растениях сем. Розоцветных, Лютиковых и некоторых видах полыни (П. Сиверса и П. холодная). Минимальные концентрации элемента обнаружены в сельскохозяйственных злаках (овес, кукуруза).

Свинец. Содержание свинца в съедобных частях растений, произрастающих в незагрязненных областях, по данным разных авторов, опубликованным в 1970-1980 г.г., составляет 0,001-0,08 мг/кг влажной массы, 0,05-3 мг/кг сухой массы и 2,7-94 мг/кг золы. Среднее содержание свинца в зерне злаковых культур из различных стран составляет 0,47 мг/кг [4]. Фоновые уровни содержания свинца в кормовых растениях составляют в среднем: для трав 2,1 мг/кг и для клевера 2,5 мг/кг сухой массы.

Дикорастущие растения исследованных районов значительно различаются по содержанию свинца (см. табл. 1, 2). В бассейне р. Майма максимальные концентрации обнаружены в черноголовке (3,2 мг/кг), в бассейне р. Сема — укосе с сенокоса (7,2 мг/кг). В сельскохозяйственных растениях содержание свинца находилось за пределами чувствительности атомно-абсорбционного метода.

Кадмий. Наибольшие концентрации кадмия в загрязненных растениях всегда обнаруживаются в корнях и листьях, тогда как в зерне кадмий отсутствует [4]. Нормальное содержание кадмия в растениях 0,05-0,2 мг/кг

воздушно-сухой массы, предположительно максимальное — 3 мг/кг [5]. Минимальная концентрация кадмия в растениях Северного Алтая составила 0,04 мг/кг (табл. 1, 2).

Хром. Содержание хрома в высших растениях варьирует в широких пределах - от $n\cdot 10^{-6}$ до $n\cdot 10^{-3}\%$ [9], 0,02-0,20 мг/кг сухой массы [10]. Средние концентрации элемента в овощных составляют: луке, картофеле – 0,021, томатах – 0,074 мг/кг сухого вещества [4].

Некоторые растения, главным образом, из районов развития серпентинитов или хромитовых месторождений, могут накапливать хром до содержаний его до 0,3% сухой массы. Содержание хрома в исследованных растениях варьировало от 0,05 (в шалфее) до 3,0 мг/кг (в зверобое) (табл. 1).

Сурьма. Сурьма не считается жизненно необходимым металлом, но известно, что ее растворимые формы активно извлекаются растениями из почв. И даже при низких концентрациях сурьма представляет опасность [11].

Среднее содержание ее в наземных растениях оценивается в 0,06 мг/кг сухой массы. В съедобных растениях концентрация сурьмы колеблется в пределах 0,02-4,30 мг/кг влажной массы, причем более высокие уровни характерны для капусты, а самые низкие – для яблок [4]. Концентрация сурьмы в исследованных нами растениях варьирует в широких пределах: от 0,05 до 6,60 мг/кг в Северном Алтае (см. табл. 1, 2). Максимальные концентрации отмечены в доннике желтом и мать-и-мачехе.

Мышьяк входит в состав растений, но его биохимическая роль практически не изучена. Мышьяк обладает подвижностью в растениях, поскольку в зерне также отмечается его концентрация. Наиболее высокие его количества фиксируются во взрослых листьях и корнеплодах.

Концентрация мышьяка в растениях, произрастающих на незагрязненных почвах, изменяется в пределах 0,00-1,5 мг/кг сухой массы, причем более высокие значения характерны для зеленых листовых овощей – до 15 мг/кг, а низкие – для фруктов от 0,009 до 0,2 мг/кг. Относительно интенсивно этот элемент концентрируется в съедобных грибах (0,8 мг/кг). В надземной части злаковых трав содержание мышьяка составляет 0,02-0,16 мг/кг, клевера – 0,28-0,33 мг/кг. Самое низкое содержание мышьяка в зерне злаковых (0,003-0,05 мг/кг). В условиях загрязнения

МИКРОЭЛЕМЕНТЫ В РАСТЕНИЯХ СЕВЕРНОГО АЛТАЯ

растения могут накапливать экстремально высокие количества мышьяка, свыше 6000 мг/кг сухой массы [4].

Концентрация мышьяка в исследованных нами растениях варьирует в широких пределах от <0,05 до 0,33 мг/кг в бассейне р. Майма (см. табл. 1). Меньший размах колебаний концентраций отмечен в бассейне р. Сема от <0,05 до 0,288 мг/кг (см. табл. 1, 2). Максимальная концентрация элемента обнаружена также в корневищах пиона уклоняющегося.

Ртуть в небольших количествах всегда присутствует в растениях. Физиологическая роль микроколичеств ртути, фиксируемых в тканях растений, еще недостаточно ясна. Возможно, ртуть присутствует в растении как загрязняющий элемент, но в малых количествах играет важную, а может быть, жизненно необходимую физиологическую роль.

Концентрация ртути в растениях на незагрязненных почвах колеблется от 0,005 до 0,05 мг/кг. Основные сельскохозяйственные культуры содержат следующее количество ртути: овощи (листья) — 0,06, зерновые (листья) — 0,04, зерновые (зерно) — 0,02, травы (надземная часть) — 0,03 [5]. Способностью аккумулировать ртуть из почвы обладают бобовые, редис, картофель, салат, томаты, лютик, роголистник, уруть [12].

Из исследованных нами растений концентрация ртути колеблется от 0,0063 до 0,036 мг/кг (табл.1, 2). Таким образом, концентрация химических элементов в растениях Северного Алтая находится в пределах фоновых значений [8] и укладываются в диапазон нормального функционирования растений [13].

Работа выполнена при финансовой поддержке гранта РГНФ 06-06-18007е, интеграционного проекта РАН ОНЗ-3.1.

ЛИТЕРАТУРЫ

- 1. Вернадский В.И. Химическое строение биосферы Земли и ее окружения. М., Наука, $2001.-376\ c.$
- 2. Ильин В.В. Элементный химический состав растений. Новосибирск: Наука, 1985. –130 с.
- 3. Школьник М.Я. Микроэлементы в жизни растений. Л.: Изд-во Наука, 1974. 324 с.
- 4. Кабата-Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях. – М.: Мир, 1989. – 439 с.
- 5. Ильин В.Б., Юданова Л.А. Тяжелые металлы в почвах и растениях // Поведение ртути и других металлов в экосистемах. Часть ІІ. Процессы биоаккумуляции и экотоксикология. Новосибирск, 1989. С. 6-47.
- 6. Ковальский В.В. // Вестник с.-х. науки. 1971. – №6. – С. 64-73.
- 7. Власюк П.А. Биологические элементы в жизнедеятельности растений. Киев: Наукова-Думка, 1969. 516 с.
- 8. Мальгин М.А. Биогеохимия микроэлементов в Горном Алтае. – Новосибирск: Наука, 1978. – 272 с.
- 9. Краснокутская О.Н, Кузьмич М.А., Выродова Л.П. Хром в объектах окружающей среды // Агрохимия. 1990. № 2. С. 123.
- 10. Ковальский В.В. Геохимическая экология. М.: Наука, 1974. 299 с.
- 11. Алексеев Ю.В. Тяжелые металлы в почвах и растениях. Л.: Агропромиздат, 1987 142 с.
- 12. Зырин Н.Г., Обуховская Т.Д. Ртуть в почвах Алтая // Агрохимия. 1980. № 7. С. 16.
- 13. Ковальский В.В., Раецкая Ю.И., Грачева Т.И. Микроэлементы в растениях и кормах. М.: Колос, 1971. 235 с.

ПОЧВЫ ЧЕРНЕВЫХ ЛЕСОВ АЛТАЕ-САЯНСКОЙ ГОРНОЙ СТРАНЫ (ГЕОГРАФИЯ, ЭКОЛОГИЯ, СВОЙСТВА И БИОГЕОХИМИЯ)

А.В. Салтыков, А.В. Пузанов

Исследованы морфологические, физико-химические и физические свойства почв черневых лесов, выявлены закономерности пространственного и внутрипрофильного распределения микроэлементов (олово, свинец, ниобий, кобальт, никель, медь, цинк, цирконий, ртуть и молибден) и радионуклидов (калий-40, торий-232 и уран-238).

Почвы черневых лесов Алтае-Саянской горной страны уже давно привлекают внимание многих исследователей, в результате чего рождались противоречивые взгляды на

их генезис [10]. Тем ни менее до сих пор остается много белых пятен в классификации, генезисе и биогеохимии этих почв.