МЕТОДОЛОГИЯ, ПРИНЦИПЫ И МОДЕЛЬ УСТОЙЧИВОГО ПРИРОДОПОЛЬЗОВАНИЯ

- 7. Бобровин Ю.А. Натуральный социалгуманизм как интегральная методология экономических и юридических наук // Методология науки: Сб. тр. Всероссийского философского семинара. Вып. 5. Проблемы типологии метода. Томск: ТГУ, 2002. 272 с.
- 8. Вернадский В.И. Избранные труды. М.: Современник, 1993. – 688 с.
- 9. Шредингер Э. Что такое жизнь? С точки зрения физика. М.: Атомиздат, 1972. 88 с.
- 10. Басаков М.М., Голубинцев О.И., Зарубин А.Г. и др. Концепции современного естествознания: Учеб. пособие / Общ. ред. С.И. Самыгина. Ростов-на Дону: Феникс. 1999. 576 с.
- 11. Кондратьев А.Н. О проявлении принципа Ле Шателье Брауна в русловых процессах // Известия РГО. 2005. Т. 137. Вып.6. С.41-45.

- 12. Розенберг Г.С., Рянский Ф.Н. Теоретическая и прикладная экология. Нижневартовск: Изд-во Нижневартовского пед. института, 2004. 294 с
- 13. Рельеф среды жизни человека (экологическая геоморфология) / Отв. ред. Э.А. Лихачева, Д.А. Тимофеев. М.: Медиа-ПРЕСС, 2000. 640 с.
- 14. Горелов А.А. Концепции современного естествознания: Учебное пособие / А.А. Горелов. М.: ВЛАДОС, 1998. 512 с.
- 15. Батороев К.Б. Кибернетика и метод аналогий. М.: Высшая школа, 1974. 104 с.
- 16. Сагатовский В.Н. Философия развивающейся гармонии: философские основы мировоззрения: В 3 ч. СПб.: Изд-во С.-П. ун-та, 1997. Ч. 1. 224 с.
- 17. Маркс К., Энгельс Ф. Сочинения: В 30 т. М.: Политиздат, 1955. Т.2.

ОЦЕНКА СОСТОЯНИЯ ВОДНЫХ ЭКОСИСТЕМ ПО КОНЦЕНТРАЦИОННЫМ КОЭФФИЦИЕНТАМ

С.В. Темерев

Методом химических индикаторов и сравнительного анализа физико-химического и пространственного распределения микроэлементов в экосистемах Обь - Иртышского бассейна проведена количественная оценка экологического состояния основного водотока — р. Обь в ее верхнем и среднем течении. Особенности формирования поверхностных вод реки Обь рассмотрены с позиций бассейнового подхода, а экологическое состояние количественно оценено с помощью концентрационных коэффициентов распределения микроэлементов в консервативных компонентах экосистемы реки.

ВВЕДЕНИЕ

Химический состав поверхностных вод бассейна реки Обь формируется в результате взаимодействия экосистемы с точечными и диффузными источниками химических токсикантов, сосредоточенных или рассредоточенных на территории водосбора. Учитывая масштабы бассейна Верхней, Средней и Нижней Оби, в основу сравнительного анализа положен индикационный метод. Химическими индикаторами выбраны тяжелые металлы (Hg, Cd, Pb, Cu), терригенные микроэлементы (Fe, Mn), а также полуметаллы As, Se, в качестве естественных индикаторов природные консервативные компоненты водной экосистемы - взвешенное вещество и донные осадки. Решающим критерием выбора индикаторов стали методические разработки в области экологического контроля как стандартные [1], так и собственные оригинальные [2, 3].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для идентификации источников поступления микроэлементов – физико-химическое и пространственное их распределение. Физико-химическое распределение микроэлементов исследовано на модельных участках бассейна реки Обь (междуречье Оби и Иртыша, урбанизированные водосборы, замыкающий створ Средней Оби - п. Белогорье). При этом рассматриваются природные индикаторы: поверхностные воды, взвешенные вещества, донные осадки, снежный покров и ледники, анализируется взаимодействие основного водотока - реки Обь с мелкими (Барнаулка [4], Алей [5]) и крупными притоками [6] (Томь, Чулым, Иртыш), включая искусственный (Новосибирское водохранилище) и природные водоемы (соленые озера Обь Иртышского междуречья) с территорией водосбора. На основании гидрохимических показателей составляющих экосистему Оби компонентов: объемных и удельных содержаний микроэлементов, концентрационных коэффициентов в абиотических консервативных компонентах, коэффициентов биотического концентрирования микроэлементов дана оценка влияния водосборной площади на формирование спектра химического загрязнения основного водотока - реки Обь в межень, идентификация путей поступления токсикантов в период снеговых паводков, характеристика экологического состояния экосистемы в целом.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Из результатов изотопных отношений, проанализированных в ИНХ СО РАН, следует, что они в образцах снеговых частиц на поверхности ледников значимо отличаются от природных и статистически совпадают с изотопными отношениями в частицах снега вблизи свинцово - цинкового комбината в г. Усть - Каменогорске . Снеговые пробы на изотопный анализ отобраны с Катунского и Северо-Чуйского хребтов, являющихся естественными барьерами на пути фронтальных воздушных масс, которые и доставляют антропогенные аэрозоли свинца в горноледниковые бассейны Алтая. Соединения антропогенного свинца поступают в ледниковые бассейны Алтая с мелкими фракциями (менее 10 мкм) аэрозолей. Источники Pb и ТМ локализованы на металлургических и рудодобывающих предприятиях Восточного Казахстана. Кроме свинца, меди и цинка в окружающую среду от этих предприятий выбрасываются И другие токсиканты, например мышьяк, но миграция этого элемента практически не изучена. Кроме атмосферного наблюдается и водный путь поступления металлов в бассейн Иртыша и далее в Нижнюю Обь. По данным анализа твердой компоненты снега в 2000 году на ты снега в 2000 году на содержание Fe, Mn, Cu, Pb и Zn в пробах, отобранных на территории Усть-Каменогорска было установлено. что уровни атмосферных выпадений по сравнению с 1992 годом уменьшились в несколько раз [8]. Тем не менее на правом берегу Иртыша, сорбированные формы Pb в пересчете на объемную концентрацию варьировались от 170 до 230 мкг/л. Концентрации Cd. связанного с твердой компонентой снега, в образцах правого берега Иртыша менялась от 148 до 167 мкг/л. Средние концентрации ТМ в снеге на левом берегу были меньше и составили 26 мкг Cd/л и 43 мкгPb/л. Растворенные формы металлов присутствовали в снеговой воде в меньших концентрациях около 3 мкг/л, но правобережная (промышленная) часть городского снега после фильтрования содержала 12-20 мкг/л металлов, что на 1-2 порядка больше, чем в снеге Барнаула. Таким образом, аналитические данные твердой компоненты ледникового бассейна использованы для идентификации источников поступления антропогенного свинца и металлов от предприятий рудного Алтая атмосферным путем. Промышленные предприятия Усть-Каменогорска и Казахстана оказывают негативное воздействие на формирование качества вод в бассейне Иртыша и через атмосферу на ледники Алтая, питающие бассейн верхней Оби.

Минеральный снеговой сток в чистом виде, как правило, малозначим по сравнению с речным стоком. Но талые воды переносят твердые частицы снежной массы (ЧС), которые в сорбированной на них форме содержат существенные удельные количества микроэлементов (таблица 1).

Таблица 1

Мольные отношения микроэлементного состава ЧС/ДО озер Кулундинской степи [13]												
Se	Cu	Pb	Cd	Zn	Fe	Mn	As	Hg				
8,9	16	48	3,4	9	5,4	1,6	0,6	3,5				

Кроме того, снеговая вода активно взаимодействует с подстилающей поверхностью, экстрагируя водорастворимые формы химических веществ(табл.3), в т.ч. тяжелые металлы (ТМ) и микроэлементы(МЭ). Объем химического стока ТМ существенно зависит от формы их нахождения в снеговой воде. При этом взвешенные формы металлов, сорбированные на твердых ЧС, преобладают над водорастворимыми. В процентном соотношении средние концентрации растворимых в снеговой воде форм ТМ по отношению к

сорбированным на ЧС можно проранжировать следующим образом:

Cd (7,2%)<Cu (8,3%)<Zn (19%)<Pb (25%).

Превышения удельных концентраций ТМ, сорбированных на ЧС, по отношению к региональному фону металлов в почвах Сибири [9], можно проранжировать следующим образом:

Pb $(2-4 \text{ pasa}) \le \text{Zn } (2-4 \text{ pasa}) \le \text{Cu } (2-5 \text{ pas}) < \text{Cd } (30-90 \text{ pas}).$

Данные превышения связаны с существенным вкладом антропогенных аэрозолей в

ОЦЕНКА СОСТОЯНИЯ ВОДНЫХ ЭКОСИСТЕМ ПО КОНЦЕНТРАЦИОННЫМ КОЭФФИЦИЕНТАМ

пылевидные выпадения на поверхность снега при его накоплении. Содержание Fe и Mn не превышает современного регионального фона. Если сравнивать результаты с уровнями регионального фона TM в почвах, то наблюдается следующая зависимость:

Cu $(1,1-1,4 \text{ pasa}) < \text{Zn } (1,2-3 \text{ pasa}) \le Pb (1,8-3 \text{ pasa}) < Cd (80-150 \text{ pas}).$

При этом Fe и Mn также не превышали современного регионального фона. При сравнении средних удельных содержаний TM (мг/кг) в кислотных вытяжках почв выявлена обратная зависимость:

Fe(6100)>Mn(280)>Zn(190)>Cu(80)>Pb(30)>Cd(4.5).

Эти концентрации отражают антропогенный путь поступления ТМ с техногенными аэрозолями в снежный покров урбанизированного водосбора (автомобильные выбросы, печное отопление, тепловые станции). Именно для Сd отмечается сильная, а для Рb очень сильная аэрозольная аккумуляция по литературным данным [10] и концентрационным коэффициентам (таблицы1, 2).

Средняя мутность снеговой воды (0,05-0,42) г/л, сравнима с мутностью речных вод бассейна Оби, причем увеличение массы ЧС в литре талой воды связано с антропогенным влиянием пылевидных выпадений. Суммарные объемные концентрации ТМ в снеговой воде бассейна р.Барнаулки не превышают существующих санитарных нормативов для водоемов хозяйственно-бытового назначения, за исключением железа, которое не признано опасным санитарно-токсикологическим показателем. Снеговая вода по своей минерализации близка к дистилляту и активно экстрагирует TM из почвогрунтов. При этом кислотность водного экстракта определяется типом почв. В нашем случае рН определяетбуферностью карбонат-бикарбонатной системы, что выражается в щелочной реакции водного экстракта по сравнению с талыми водами. Доля водорастворимых форм зависит от растворимости минеральной основы почвы и для некоторых металлов, например Рb и Cu, достигала 20 %.

Таблица 2

Мольное распределение ТМ по компонентам водной экосистемы реки Барнаулки												
№ створа	2	5	2	5	2	5	2	5	2	5	2	5
TM	Cd·1000		Cu		Zn		Fe		Mn		Pb	
Объект		Концентрация металла, микромоль ТМ/л										
ЧС, снег	4	11	0,07	0,2	0,30	1,30	15,2	175,5	0,30	2,5	0,20	0,81
ВВ, вода	2	1	0,02	0,09	0,12	0,30	39,8	62,2	0,70	6,1	0,03	0,02
		Концентрация металла, миллимоль ТМ/кг										
ДО	0,2	2,4	0,04	0,2	0,24	0,36	187,6	270,6	0,4	4,5	0,01	0,02
Почва	30	100	0,04	0,14	0,34	1,1	6,9	95,9	5,3	9,4	0,09	0,33
Кларк	0,27		0,90		1,2		596		12,1		0,09	
ЧС/ВВ/ДО (створ №5)	11/1/2		2/1/2		4/1/1		2,8/1/4,4		1/2,4/1,8		40/1/1	

Примечание. ЧС – твердые частицы снега, ВВ – взвешенное вещество реки, ДО – донные отложения, Кларковые содержания представлены для осадочных пород по А.П.Виноградову; 2 – входной и 5 – замыкающий створы мониторинга

Мольные концентрации ТМ (№ 5, табл. 2), сорбированных на частицах снега, и наглядно подтверждает определяющую роль консервативных компонентов (твердых частиц снега, взвешенного вещества реки, пойменных почв) в балансе абиогенных форм микроэлементов в экосистеме. Содержание ТМ в гидробионтах реки Барнаулки (карась, плотва), Средняя Обь (щука, окунь) не привышали существенно ПДК [11, 12]. Оценка процесса биотического накопления ТМ по отношению к содержанию живой биомассе оценивали по концентрационным коэффициентам биотического концентрирования. Эти результаты показательны как разовые и требуют дополнительных средневзвешенных расчетов накопления МЭ в рыбах. Что касается ДО и почв, то поступление ТМ(МЭ) можно оценить концентрационным коэффициентом f_{extr}, отношением содержаний ТМ в водной(ВВП) и кислотной вытяжках(КВП) fextr.= (ВВП/КВП) и соответственно. Концентрационные коэффициенты f_{extr.} имеют узкие интервалы варьирования, меняются в зависимости от природы металла и составляют для Fe(0,10), Mn (0,15), Zn (0,10-0,14), Cd (0,03-Pb (0,15-0,18),Cu (0,15-0,20), $As(0,50\pm0,05)$. Они свидетельствуют о вкладе подвижных форм металлов и их величины хорошо согласуются с полученными ранее данными для Верхней Оби [7]. Их величины использованы в имитации фоновой концентрации водорастворимых форм железа и марганца в Средней Оби (таблица 3). Данные для других МЭ

представлены без учета коэффициентов f_{extr} Экспериментальные данные таблица 3 представлены для осенней межени, когда основное питание реки происходит за счет атмосферных осадков и приповерхностного стока грунтовых вод и почвенных растворов. Расчет свидетельствует, что основные источники химической нагрузки на главный водоток Средней Оби оказывают притоки Томь, Чулым и Иртыш, повсеместно влияющие на поступление марганца и железа в обскую воду с болотистых территорий, активно аккумулирующих водный сток. Появление водорастворимых форм цинка и меди в створах 11, 12 является результатом влияния Иртыша вследствие поступления этих элементов с водосборов реки в Казахстане, очень сильно загрязненных этими элементами. При оценке степени загрязненности консервативных компонентов экосистемы реки по отношению к региональному фону Западной Сибири [12] ТМ можно расположить следующим образом:

Почвы и ДО: Cd>Pb>Zn>Cu>Fe≈Mn; BB: Cd>Cu>Pb>Zn>Fe≈Mn.

В зависимости от удельного содержания ТМ компоненты водной экосистемы можно расположить в следующем порядке: $4C > BB > \Pi > DO$.

Таблица 3

Содержание водорастворимых форм МЭ в водах Средней и Нижней Оби [12]

	Концентрация тяжёлого металла, мкг/л								
Номер створа	Zn	Cd	Pb	Cu	Fe	Mn			
1	120±35	<0,1	1,9±0,5	1,8±0,2	32±5	35±2			
2	31±4	<0,1	3,1±0,8	3,3±0,2	18±3	32±4			
3	24±2	<0,1	1,7±0,5	12±0,2	142±7	16±2			
4	27±3	<0,1	2,5±1,0	6,6±0,3	38±4	14±1,5			
5	25,7±1,3	<0,1	1,8±0,6	2,9±0,2	16±1	26±0,6			
6	37±2	<0,1	1,9±0,5	1,8±0,4	32±3	42±2,5			
7	41±8	0,8±0,1	2,4±0,3	9,2±0,6	110±8	28±0,8			
8	75±6	0,2±0,1	2,3±0,4	4,2±0,4	88±5	32±3			
9	54,6±3,2	0,3±0,1	1,5±0,3	3,8±0,4	83±5	32±4			
10	36±4	<0,1	1,3±0,5	2,4±0,3	94±4	40±5			
11	87±9	0,4±0,2	2,0±0,2	34,5±0,9	120±9	96±6			
12	180±12	0,9±0,3	6,9±0,9	62,5±0,7	260±10	112±2,5			
13	35±10	0,35±0,2	4,3±0,7	3,5±0,2	140±5	90±3			
ПДКвр	10	5	10	1	50	10			
ПДК₃	1000	1	30	1000	300	100			
Фон	1-20	<0,4	<10	<5	10-50	10-100			
Имитация фоновой концентрации по почвам (<0,06>×<Сфон>)									
As	Zn	Cd	Pb	Cu	Fe	Mn			
0,9	4,4	0,006	1,08	1,9	150	7,2			

Примечание. <0,06>, [г/л] — средняя мутность воды в створах 4, 7, 12 в 1997, 2001, 2002 гг. [6]; <Сфон> - фоновые концентрации почв Сибири [9], мкг/г

Величины экстракционных коэффициентов f_{extr.} подходят для расчета нагрузки в межень по объему осадков для малых притоков по их средним величинам (соответствуют экспериментальным данными). Взятая за основу оценки фоновая концентрация 15 ± 5 мг/кг для почв Приобья несколько завышена и реально близка к 8 мг As/ кг. Установление фонового содержания мышьяка и селена в этой части бассейна Оби требуют более подробных исследований. Предварительные результаты определения селена в компонентах экосистемы реки Барнаулка показывают его фоновые содержания и дефицит его в водах Оби. Методом химических индикаторов (мышьяка, ртути) с помощью концентрационных коэффициентов идентифицированы точечные и диффузные источники антропогенного поступления этих токсикантов в водную экосистему бессточного озера [13].

ЗАКЛЮЧЕНИЕ

На основании полученных результатов можно сделать следующие выводы.

1. С помощью химических индикаторов -Zn, Cd, Pb, Cu, Fe, Mn, Hg, As, Se и представительных аналитических данных экосистемы малой реки, исследования подтверждено усиленное антропогенное воздействие на экосистему реки Барнаулки в нижнем течении. связанное С атмосферными выбросами. c/x деятельностью и автотранспортом.

ОЦЕНКА СОСТОЯНИЯ ВОДНЫХ ЭКОСИСТЕМ ПО КОНЦЕНТРАЦИОННЫМ КОЭФФИЦИЕНТАМ

- 2. выявлены устойчивые превышения Zn, Cd, Pb, Cu в ЧС, BB, почвах и ДО в экосистеме реки Барнаулки по сравнению с региональным фоном, установлена тенденция накопления Zn и Cu при сохранении повышенных содержаний Pb и Cd.
- 3. Исследованы абиотические и биотические компоненты экосистемы: снежный покров, почва, вода, взвешенное вещество, донные отложения, гидробионты; экспериментальным путем рассчитаны концентрационные коэффициенты абиотического и биотического накопления микроэлементов в консервативных компонентах экосистемы бассейна Оби, которые могут применяться для оценки экологического состояния других водных экосистем.

ЛИТЕРАТУРА

- 1. Вода. Контроль химической бактериальной и радиационной безопасности по международным стандартам. М.: Протектор, 2000. 848 с.
- 2. Темерев С.В., Егорова Л.С. Экстракционный способ подготовки аналитических образцов//Патент РФ №2232718,10.02.2003. 6с.
- 3. Темерев С.В. Электрохимический способ определения мышьяка в природных объектах//Патент РФ №2269771, приоритет от 05.10.2004. 5 с.
- 4. Темерев С.В., Галахов В.П., Плотникова Ю.Е. Фомирование и распределение химического стока реки Барнаулки// Изв. Алт. гос. ун-та, 2001. T.21, N2. C.32-37.
- 5. Папина Т.С., Сухенко С.А., Темерев С.В., Артемьева С.С. Тяжелые металлы в объектах среднего течения реки Алей /Материалы научных

- исследований. Ядерные испытания, окружающая среда и здоровье населения Алтайского края. Т. 2, кн. 2. Барнаул, 1993. С. 54-62.
- 6. Темерев С.В., Савкин В.М. Тяжелые металлы индикаторы состояния реки Оби //Химия в интересах устойчивого развития. 2004. Т.12. С. 569-579.
- 7. Индюшкин И.В., Темерев С.В. Оценка объемов снегового стока металлов в водоток в рамках модели «накопление- смыв» для урбанизированных территорий//Химия в интересах устойчивого развития, Т. 12, 2004. С.525-539.
- 8. Галахов В.П., Темерев С.В., Сапрыкин А.И., Шуваева О.В., Эйрих А.Н., Дудник А.В., Полесский С.Н., Кощеева О.С., Бондарович А.А., Якубовский В.И. Тяжелые металлы антропогенного происхождения в ледниках Алтая (по исследованиям в бассейне Актру)//Материалы гляциологических исследований. 2002. Вып.93. С.195 199.
- 9. Сысо А.И. Общие закономерности распределения микроэлементов в покровных отложениях и почвах Западной Сибири//Сибирский экологический журнал. №3. 2004. С.273-287.
- 10. Добровольский В.В. Основы биогеохимии. М.: Изд. центр «Академия», 2003. 400 с.
- 11. Газина И.А., Темерев С.В., Индюшкин И.В. Содержание ртути в рыбах Верхней и Средней Оби// Изв. Алт. гос. ун-та, 2003. № 3. С.93-95
- 12. Темерев С.В. Оценка экологического состояния речных систем (Западная Сибирь, Средняя Обь)// Изв.Алт. гос. ун-та, 2005. № 3. С.45-49.
- 13. Темерев С.В., Галахов В.П., Эйрих А.Н., Серых Т.Г. Особенности формирования химического состава снегового стока в бессточной области Обь-Иртышского междуречья//Химия в интересах устойчивого развития, 2002, Т.10. С.485-496.

ОЦЕНКА СОСТОЯНИЯ ВОДНЫХ ЭКОСИСТЕМ ПО ХИМИЧЕСКИМ НАГРУЗКАМ

С.В. Темерев

Методом химических индикаторов и сравнительного анализа пространственного распределения химической нагрузки по микроэлементам на экосистемы Обь - Иртышского бассейна проведена количественная оценка экологического состояния основного водотока — р. Обь в ее верхнем и среднем течении. Особенности формирования поверхностных вод Оби рассмотрены с позиций бассейнового подхода и количественно по химическим нагрузкам оценено взаимодействие реки с поверхностью водосбора.

ВВЕДЕНИЕ

Металлы наиболее стабильные во времени химические вещества и для них разработаны надежные методики анализа [1, 2, 3] в природных объектах: воздухе, воде и почве. Для лабильных компонентов снеговой и природной воды использовали имитационный расчет химических нагрузок на водоток по