катодного тока, то эту величину $I_{п.к.}$ можно принять за меру электрокаталитической активности комплексов. Как видно из данных таблицы 2, исследуемые координационные соединения по каталитической активности в реакциях электровосстановления располагаются в ряд $[Cu(L^1)Cl_2] > [Cu(L^1)(O_2NO)_2] >$ $[Cu(L^2)(O_2NO)_2]\cdot 2H_2O$. В этом же ряду изменяются в положительном направлении и их формальные потенциалы восстановления $E_{\frac{1}{2}}$ (таблица 1). Наибольшая активность тетраэдрического комплекса $[Cu(L^1)Cl_2]$ связана, по-видимому, с необходимостью меньшей перестройки координационной сферы при встраивании в нее дополнительной молекулы кислорода по сравнению с октаэдрическими комплексами нитрата меди(II).

Таким образом, установленная электрокаталитическая активность комплексных сомеди(II) единений С производными бис(пиразол-1-ил)метана в реакциях восстановления кислорода, пероксида водорода и нитрит-ионов указывает на возможность изготовления химических сенсоров для определения этих соединений. Преимуществами сенсоров на основе УПЭ являются простота изготовления и легкость обновления рабочей поверхности электрода [14]. Кроме того, возможно применение рассматриваемых комплексов в качестве катализаторов в топливных элементах вместо дорогостоящих платиновых металлов.

ЛИТЕРАТУРА

- 1. Winter M., Brodd R.J. // Chem. Rev. 2004. Vol. 104. pp. 4245-4270.
- 2. Ozoemena K., Nyokong T.// Electrochimica Acta. 2006. Vol. 51. pp. 2669-2677.
- 3. Zhang J., Anson F. // J. Electroanal. Chem. 1992. Vol. 341. pp. 323-341.
- 4. Lei Y., Anson F.// Inorg. Chem. 1994. Vol. 33. pp. 5003-5009.
- 5. Abraham K. Yusuff // J. Mol. Catal. A: Chem. 2003, Vol. 198. pp. 175-183.
- 2003. Vol. 198. pp. 175-183.
 6. Dias V., Fernandes E., Silva L., Marques E.,
 Zhang J., Marques B.// J. Power Sources. 2005. Vol. 142. pp. 10-17.
 - 7. Potapov A.S., Khlebnikov A.I.// Polyhedron.
- 8. Будников Г.К., Майстренко В.Н., Вяселев М.Р. Основы современного электрохимического анализа М.: Мир Бином ЛЗ, 2003. 592 с.
- 9. Bernardo M., Robandt P., Schroeder R., Rorabacher D.// J. Am. Chem. Soc. 1989. Vol. 111. pp. 1224-1231.
- 10. Tomat R., Salmaso R., Zecchin S. // Electrochimica Acta. 1994. Vol. 39. pp. 2475-2479.
- 11. Wilshire J., Sawyer D. // Acc. Chem. Res. 1979. Vol. 12. pp. 105-110.
- 12. Nagao H., Komeda N., Mukaida M., Suzuki M., Tanaka K.// Inorg. Chem. 1996. Vol. 35. pp. 6809-6815
- 13. Zagal J.// Coord. Chem. Rev. 1992. Vol. 119. pp. 89-136.
- 14. Улахович Н.А., Медянцева Э.Л., Будников Г.К. // Журн. аналит. химии. 1993. Т. 48. С. 980-998

ИСПОЛЬЗОВАНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ Pd(II) И Pt(II) В ПРОЦЕССЕ ХИМИЧЕСКОЙ СЕНСИБИЛИЗАЦИИ

Б.А. Сечкарев, Ф.В. Титов, Д.В. Дягилев, К.А. Бодак, А.А. Владимиров

В статье отражено систематическое исследование процесса химической сенсибилизации эмульсионных микрокристаллов AgBr кубической огранки комплексными ионами $[XY_4]^{2^-}$, где X = Pd, Pt; $Y = C\Gamma$, Br, SCN, $SO_3^{2^-}$. Определены условия позволяющие включать ионы палладия в состав центров скрытого изображения, что приводит к усилению каталитической активности последних.

ВВЕДЕНИЕ

Оптимизировать фотографический процесс в галогенидосеребряных фотоматериалах возможно путем использования систем, позволяющих повысить эффективность фотопроцесса за счет более эффективного использования энергии света, уменьшения рассеяния в эмульсионном слое, локализации скрытого изображения (СИ) и повышения 12

эффективности процессов химикофотографической обработки материалов. Примером таких систем являются микрокристаллы (МК) AgHal с примесными ионами. Чаще всего в микрокристаллы AgHal, чтобы управлять их фотографическими свойствами, внедряют ионы тяжелых металлов [1].

Формирование скрытого изображения в микрокристаллах галогенида серебра – про-ПОЛЗУНОВСКИЙ ВЕСТНИК № 2 2006

цесс, который исследовался с целью его оптимизации. Основной составляющей этого вопроса было создание эмульсионных МК AgHal с заданными свойствами. Большое количество работ в этой области посвящено контролируемому введению примесей в матрицу AqHal, изменяющих кинетику фотохимической реакции, а именно тормозящих рекомбинацию носителей зарядов. При этом процессам, протекающим на поверхности МК во время химической сенсибилизации (ХС) уделялось внимания меньше, и этот вопрос носил в основном эмпирический подход. Традиционные методы химической сенсибилизации микрокристаллов AgHal не всегда обеспечивают достижение требуемых фотографических характеристик. При проведении ХС желательно осуществлять, с целью повышения эффективности протекания фотопроцесса, селективную локализацию примесных центров на определённых участках кристаллов. Включение в состав центров скрытого изображения (ЦСИ) каталитически активных элементов, например палладия или платины, безусловно, повлияет на различные стадии фотопроцесса. Введение комплексных соединений типа $[XY_4]^2$ (X = Pd, Pt; Y = Br, Cl, SO3-, SCN) в MK AgHal возможно как на стадии их синтеза, так и на стадии химической сенсибилизации.

Целями настоящей работы являются:

- 1. Определение условий XC, позволяющих включать ионы палладия или платины в состав ЦСИ изометрических МК AgBr.
- 2. Определение фотографических свойств эмульсионных слоев на основе таких MK.

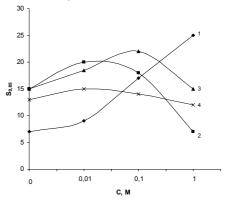
МЕТОДИКИ ЭКСПЕРИМЕНТА

На первом этапе работы была изготовлена фотографическая эмульсия, содержащая МК AgBr {100}, со средним эквивалентным диаметром \overline{d} = 0,5 мкм и коэффициентом вариации по размерам $C_v = 10-15\%$. Изготовление галогенидосеребряной эмульсий проводилось способом контролируемой двухструйной кристаллизации. В реактор, содержащий требуемое количество водножелатинового раствора, при постоянном перемешивании подавались растворы КНаІ и AgNO₃. В процессе синтеза регулировались температура, концентрация ионов [НаП], скорость подачи растворов реагентов. По завершении процесса синтеза, эмульсии промывали от растворимых солей, приводили значения pBr и pH к оптимальным для процесса сенсибилизации. В процессе сернистозолотой сенсибилизации полученной эмульсии ионы $[XY_4]^{2^-}$ вводились после основных сенсибилизаторов ($Na_2S_2O_3$ и $HAuCl_4$) в концентрациях от 10^{-6} до 10^{-3} моль/моль Ag. Объем раствора вводимого комплекса равен 0,1 мл., время XC составляло 60 - 90 мин. После чего эмульсии поливали на триацетатную основу и подвергали сенситометрическим испытаниям.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В таблице 1 приведены сенситометрические характеристики слоев содержащих МК AgBr сенсибилизированные с использованием комплексных соединений Pt(II) и Pd(II) при различном составе лигандов.

Таблица 1
Влияние состава лигандов на сенситометрические характеристики эмульсионных слоев


ларактери	ICIVINI JIVIYI	івсионных слоев		
Добавки при ХС		Сенситометрические		
		характеристики		
Комплекс	С, моль/ моль Ag	S _{0,2} /S _{0,85} /D _{max} /D ₀		
_	_	2,8/11/3,5/0,04		
K₂[PdCl₄] K₂[PtCl₄]	10 ⁻³	2,1/10/3,7/0,04 0/0/0,05/0,01		
	10 ⁻⁴	2/7/2,8/0,02 1,6/6/2,26/0,05		
	10 ⁻⁵	1,5/4/2,5/0,03 2,6/11/3,25/0,16		
K₂PdBr₄ K₂PtBr₄	10 ⁻³	1,5/9/3,5/0,03 0,5/0/0,7/0,01		
	10 ⁻⁴	2,3/15/3,6/0,04 0,7/3,4/1,4/0,02		
	10 ⁻⁵	3/13/3,8/0,01 3/14/4,48/0,09		
K ₂ [Pd(SCN) ₄] K ₂ [Pt(SCN) ₄]	10 ⁻³	3/12/4,2/1,02 0,35/0/0,6/0,03		
	10 ⁻⁴	4/15/3,8/0,70 1,1/5/2,3/0,03		
	10 ⁻⁵	4/18/3,3/0,40 4,5/23/5,11/0,16		
Na ₆ [Pd(SO ₃) ₄] Na ₆ [Pt(SO ₃) ₄]	10 ⁻³	1,6/9/3,4/0,01 0,46/2/0,9/0,03		
	10 ⁻⁴	5/23/4,46/0,01 22/60/4,0/0,8		
	10 ⁻⁵	1,3/7/3,4/0,05 13/19/4,42/0,28		
	-			

Из таблицы 1 видно, что соединения Pt(II) с ионами СІ и Вг при любых концентрациях вызывают десенсибилизацию. Прирост же чувствительности наблюдается в случае роданид и сульфит ионов, что объясняется сенсибилизирующей способностью роданидионов. Высвободившись из комплексного иона при вторичной диссоциации, роданидионы вступают во взаимодействие с поверхностью МК. Сульфит ионы в исследуемой

системе индифферентны и не оказывают влияние на протекание топохимических реакций на поверхности AgHal. Ряд исследований показали, что ионы Pt(II) могут служить центрами захвата электронов или дырок, а также центром рекомбинации. [2, 3]. Таким образом, можно говорить, что координационная сфера изменяет топографию центров локализации иона Pt(II) на поверхности МК. Причиной данного эффекта может служить кинетика вторичной диссоциации комплексного иона и кинетика его взаимодействия с поверхностью AgBr. Таким образом, можно предполагать, что координационная сфера влияет на процесс взаимодействия комплексных ионов Pt(II) и Pd(II) с поверхностью AgBr, что в свою очередь приводит к качественному и количественному изменению ЦСИ. Добавление в процессе сенсибилизации соединений Pt(II) приводит к увеличению чувствительности при концентрациях 10^{-5} - 10^{-4} моль/моль Ag, для всех добавок за исключением комплекса с хлоридными лигандами. Наибольший рост светочувствительности происходит при использовании комплекса с лигандами SCN⁻, однако уровень оптической плотности вуали при этом значительно возрастает ($D_0 = 0.7$ и 0.4 для концентраций 10^{-4} и 10^{-5} моль/моль Ag соответственно). Возможно, в данном случае сенсибилизирующее действие оказывают ионы SCN высвободившиеся из комплекса в результате его вторичной диссоциации. Десенсибилизация в случае введения комплексного иона с лигандами Br и Cl, скорее всего, вызвана высвобождением дополнительного количества галогенид ионов, которые способны оказывать десенсибилизирующее действие [4]. Следовательно, если исключить или свести к минимуму процессы вторичной диссоциации комплексных ионов. то, возможно, реализовать подходы к использованию комплексных соединений палладия и платины в качестве химических сенсибилизаторов.

Известно, что комплексные ионы $[XY_4]^{2-}$ в водном растворе легко подвергаются вторичной диссоциации, что приводит к уменьшению заряда иона. Уменьшить вторичную диссоциацию комплексных ионов возможно добавлением в раствор электролита, содержащего ионы лиганда [5]. Поэтому к раствору комплексного соединения, используемого в процессе химической сенсибилизации, добавлялся электролит с ионами лиганда (фоновый электролит). Результаты влияния фонового электролита, в составе растворов комплексных ионов, используемых в процес-

се ХС, приведены на рис.1 в виде зависимостей светочувствительности от концентрации фонового электролита.

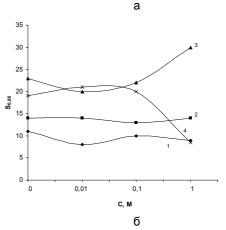


Рисунок 1 — Зависимости светочувствительности от концентрации фонового электролита: а — $K_2[PdY_4]$ (C = 10^{-4} моль/моль Ag); б — $K_2[PtY_4]$ (C = 10^{-5} моль/моль Ag), где Y (1 - Cl⁻, 2 – Br⁻, 3 - SCN⁻, 4 — SO_3^-)

Для комплексного соединения с хлоридными лигандами прирост чувствительности наблюдается при концентрации фонового электролита большей 0,1 М. Поскольку устойчивость данного комплекса к вторичной диссоциации минимальна можно предположить, что при концентрациях менее 0,1 М вторичная диссоциация все же протекает. Также можно предположить, что движущей силой каталитического воздействия ионов Pd(II) в данном соединении является процесс замещения хлоридных лигандов на бромидные, протекающий на поверхности МК AgHal, что увеличивает вероятность внедрения иона Pd(II) в примесный центр чувствительности.

В случае Вг лигандов оптимальная концентрация фонового электролита составляет от 0,01 до 0,1 М. Большая концентрация приводит к десенсибилизации, очевидно из-за избытка Вг ионов и их негативного влияния на процесс химической сенсибилизации.

ПОЛЗУНОВСКИЙ ВЕСТНИК № 2 2006

Из результатов эксперимента, видно, что наиболее целесообразно в процессе химической сенсибилизации использовать комплексные ионы палладия с лигандами СГ. При этом раствор комплексного иона необходимо вводить с концентрацией фонового электролита КСІ не менее 1 М.

Соединение с лигандами SCN при изменении концентрации фонового электролита снижает чувствительность МК по причине увеличения уровня минимальной оптической плотности. При этом некоторое увеличение чувствительности, возможно, вызвано увеличением количества SCN⁻, вводимого в реакционную емкость, являющимся, как известно сенсибилизатором МК. В связи с этим были проведены эксперименты с введением в исследуемую эмульсию в процессе сенсибилизации эквивалентного количества SCN ионов. Результаты приведены в таблице 2 в виде оптимальных сенситометрических характеристик. Сопоставляя сенситометрические характеристики образцов можно говорить о выраженных сенсибилизирующих свойствах комплексных ионов палладия с лигандами SCN⁻. Таким образом, в процессе работы установлено, что процессу сенсибилизации препятствует процесс вторичной диссоциации $[PdX_4]^2$, приводящий к снижению заряда комплексного иона. Уменьшить вторичную диссоциацию комплексных ионов можно путем добавления в раствор электролита, содержащего ионы лиганда. Показано, что наиболее целесообразно в процессе химической сенсибилизации использовать комплексное соединение $K_2[PdCl_4]$. При этом его необходимо вводить с концентрацией фонового электролита KCI не менее 1 М.

Таблица 2 Сенситометрические характеристики образцов содержащих МК AgBr сенсибилизированные $K_2[Pd(SCN_4)]$ с различной концентрацией фонового электролита и эквивалентным количеством KSCN

Добавки химической сенси-		Сенситометрические			
билизации		характеристики			
$K_2[Pd(SCN)_4],$	KSCN,	S _{0,2}	S _{0,85}	D_{max}	D_0
моль/моль Ад	моль/моль				
	Ag				
-	-	2,8	11	3,5	0,04
10 ⁻⁵	_	4	18	3,3	0,03
	5·10 ⁻⁶	4	17	3,7	0,03
	5·10 ⁻⁵	3	15	3,7	0,02
	5·10 ⁻⁴	4,5	20	3,9	0,03
_	5·10 ⁻⁶	2	10	3,5	0,02
	5·10 ⁻⁵	1,5	12	2	0,02
	5·10 ⁻⁴	1,5	10	1,8	0,02

ЛИТЕРАТУРА

- 1. Gahler S., Roewer G., Berndt E. Metallionen in photographischem Silberhalogenids systemen. Journal of Information on Recording Materials, 1986, p. 427-431.
- 2. Eachus R.S., Graves R.E., Olm M.T., Chem J., Phys. Rev., 69, 1978.
- 3. Eachus R.S., Graves R.E., M.T. Olm, Phys. Status Solidi, 57, 1980.
- 4. James T.H. In The Theory of the Photographic Process, 4th ed., T. H. James, ed., Macmillan, New York, 1977.
- 5. Побелов И.В., Борзенко М.И., Цирлина Г.А., Петрий О.А. Восстановление ансамбля аквахлоридных комплексов Pt(II). Анализ в рамках феноменологического подхода Электрохимия, Т. 37, № 3. 2001.

ВЗАИМОДЕЙСТВИЕ СОЛЕЙ НИКЕЛЯ(II), КОБАЛЬТА(II) И МАРГАНЦА(II) С ОКСИМОМ 3-ФЕНИЛ-5,5-ПЕНТАМЕТИЛЕН-4-ИЗОКСАЗОЛОНА

Н.Н. Чурилова, А.В. Суховерская, Н.Г. Малюта

Методом рентгенофазового анализа подтверждена индивидуальность и доказана изоструктурность оксима 3-фенил-5,5-пентаметилен-4-изоксазолона и комплексов Ni(II), Co(II) с оксимом в качестве лиганда. Показано, что комплекс марганца(II) имеет структуру отличную от структуры исходного лиганда и комплексов никеля(II) и кобальта(II).

ВВЕДЕНИЕ

Моно- и α-диоксимы нашли широкое применение в аналитической химии в качестве реагентов для определения микроконцентраций многих элементов. Альдоксимы на

основе азотсодержащих гетероциклических соединений представляют интерес как органические реагенты в спектрофотометрии.

Важным направлением в координационной химии является получение и исследова-