ОПЫТ ПРИМЕНЕНИЯ КОТЛОВ С ВИХРЕВЫМИ ТОПКАМИ ДЛЯ УТИЛИЗАЦИИ РАСТИТЕЛЬНЫХ ОТХОДОВ

Е.М. Пузырев, М.А. Шарапов, А.М. Шарапов, В.П. Щуренко

Сегодня вихревые топки находят все большее применение. Они внедрены для сжигания лузги, древесных отходов, угля и водоугольного топлива в 34 котлах различных типов, мощностью до 25 т/ч, установленных в 24 котельных. Их использование расширяется и считается одним из основных направлений деятельности ЗАО ПО «Бийсэнергомаш», ОАО БиКЗ, НИЦ ПО «Бийсэнергомаш» и других фирм.

Для сжигания лузги и растительных отходов ОАО БиКЗ освоено производство новых котлов Е-16-21-350 ГМДВ, КЕ-10-14 ОГВ, КВ–1,86 ВД и УСШ-1-1,4 ГМДВ.

Первый котел E-16-21-350 ГМДВ, являющийся головным образцом установлен и работает в котельной Урюпинского МЭЗ с 1998 г. Блок котла (рис.1) установлен над вихревой топкой и соединен с ней вертикальным газоходом, в котором расположен пароперегреватель (перегрев пара, до 350° C). Вихревая топка шестигранная с горизонтальной осью вращения, образована двумя цельносварными экранами, выполненными из труб \emptyset 51×2,5 с шагом 55 мм. Выход топки образован фестоном из труб \emptyset 51×2,5, а со сто-

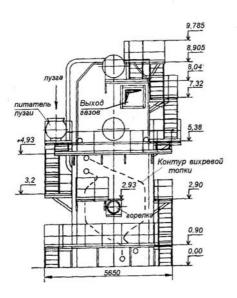


Рис.1. Вид котла E-16-2,1-350 ГМДВ с фронта (в двухэтажной компоновке): внизу вихревая топка, блок котла сверху

роны глухого торца топки, выполненного обмуровкой, установлена горелка ГМ-7 и лаз.

При пуске котла Е-16-21-350ГМДВ (рис.1) Урюпинского МЭЗ с удлиненной шестигранной топкой возникли значительные проблемы. Из-за плохой настройки аэродинамики имели место пульсации давления, заваливание сопел нижнего дутья и скопления несгоревшей лузги. Скопления свежей лузги, из-за её масляничности, под действием высоких температур, смачивались смолистыми выделениями, слипались и коксовались.

Работа топки характеризовалась плохим охлаждением, из-за перегрева появились значительная возгонка золы и её отложения в котельных пучках. После пусконаладочных работ и ряда изменений были настроены приемлемые режимы.

На сегодня в топке не формируются золовые и коксовые отложения, котлы E-16-21-350 ГМДВ высокоэффективны. Переход на использование лузги (круглосуточная работа 4—6 автомобилей, потребление газа, экологические штрафы и др.) дал значительную экономию и за год окупил вложение средств в строительство котельной, установку оборудования и котла E-16-24-380 ГМДВ. ОАО БиКЗ изготовил еще два таких котла (для Лабинского МЭЗ) и имеет заказы.

Эффективными оказались котлы с охлаждаемой топкой радиального типа, рис.2. Они могут поставляться заводом или, что особенно важно для заказчиков, выполняться реконструкцией имеющихся котлов КЕ и ДКВр по проектам ЗАО ПО «Бийскэнергомаш» и НИЦ ПО «Бийскэнергомаш». Они выполнены в соответствии с патентами [55, 57].

В качестве примера на рис.2. приведен вертикальный разрез радиальной топки реконструированного котла ДКВр-4-13 примененных в котельных ООО «Курень»— с. Кочубеевское, фирмы «Паритет»— г.Урюпинск и маслозавода п. Перелешинский. Топки радиального типа использованы в трех котлах КЕ-6,5-14 и выполнены по проекту, первоначально примененному в котельной Бутурлиновского маслозавода. Радиальная топка применена в реконструированном котле КЕ-10-14 котельной ОАО «Сибкорн», г. Омск, а сдвоенная радиальная топка в котлах КЕ-25-14-250 котельных маслозавода п. Валуйки и г.

Миллерово. Радиальная топка была так же вписана в профиль котла ДКВр-2,5-13 ко-

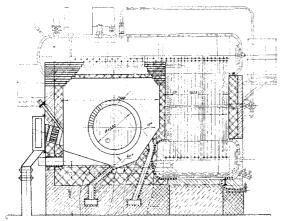


Рис.2. Реконструкция котла ДКВр-4-13 на сжигание лузги в вихревой топке радиального типа, резервное топливо природный газ

тельной Балашовского горчичного завода, г. Балашов и использовалась при реконструкции котлов E-1/9 малой мощности.

Среди новой продукции ОАО «БиКЗ» изготовил опытные образцы и освоил производство котлов УСШ-1-1,4 ГМДВ, рис.3, выполнил рабочий проект котла Е-4-1,4 ГМДВ с шестигранными вихревыми топками и выполняет проект котла Е-10-1,4-350 ГМДВ с радиальной топкой.

Низкотемпературный режим обеспечивает работу котла с низкой эмиссией выбросов и без образования прочных отложений. Выбросы оксидов азота не более 250 мг/нм³, СО до 250...150 мг/нм³, золы до 750 мг/нм³ с золоуловителем ОАО БиКЗ типа «Буран» и до 30 мг/нм³ с рукавными фильтрами.

При утилизации растительных отходов рекомендуются золоуловители сухой очистки (циклоны, рукавные и электрические фильтры). Скрубберы из-за выраженной щелочной реакции золы Ph=9–10 и заметного содержания кальция не рекомендуются.

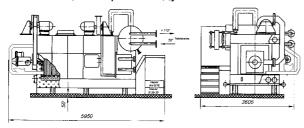


Рис.3. Котел УСШ-1 для сжигания лузги, резервное топливо газ

Неохлаждаемые вихревые топки просты и выполняются кладкой обмуровки практически под любыми котлами, но их технологические схемы более сложные. За котлом установлены экономайзеры первой и второй ступени с отбором газов между ними и подачей их совместно с воздухом в топку дымососом рециркуляции.

В качестве примера в таблице 1 приведены показатели работы котельной установки с котлом КЕ-10-14 ОГВ (рис.4).

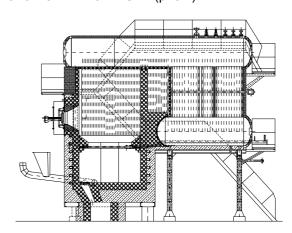


Рис.4. Котел КЕ-10-14 ОГВ, установленный в котельной ОАО «Чишминское»

Котлы КЕ-10-14 ОГВ и КЕ-4-14 ОСВ, Барнаульского маслобойного завода, рис.5., имеют похожие топочные процессы, но из-за использования в качестве резервного топлива угля, последние оснащены механизированными топками с шурующей планкой.

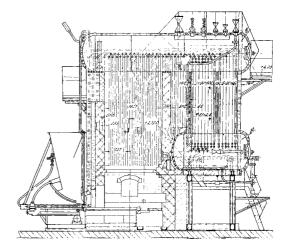


Рис.5. Котел KE-4-14 OCB с топкой шурующая планка, котельная Барнаульского маслобойного завода

ОПЫТ ПРИМЕНЕНИЯ КОТЛОВ С ВИХРЕВЫМИ ТОПКАМИ ДЛЯ УТИЛИЗАЦИИ РАСТИТЕЛЬНЫХ ОТХОДОВ

Удержание лузги и ее глубокое выгорание легко настраивается как в топках с вертикальной осью вращения вихря, так и в котлах с вихревыми топками радиального типа и обеспечено во всех вариантах топок.

Топки легко растапливаются как при использовании резервного топлива, так и без его применения, путем прямого поджигания лузги. Прогрев и выход на стабильное горение занимает до 30–50 минут. Глубина регулирования и устойчивость горения лузги высокая.

Зольность растительных отходов минимальна, но её наличие является серьёзным препятствием при внедрении утилизирующих котлов. На рис.6. показаны отложения в первом котельном пучке КЕ-10-14 ОГВ при сжигании подсолнечной лузги. Наибольшие и прочные отложения формируются в топе и на первых трубах котельного пучка. Далее по ходу дымовых газов отложения рыхлые и легко выносятся.

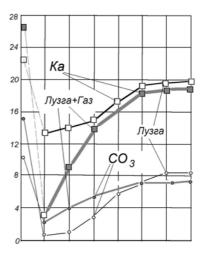


Рис.6. Отложения в 1-м котельном пучке котла КЕ-10-14 ОГВ при сжигании подсолнечной лузги

По лабораторным анализам НПО «Алтай» до 96% золы подсолнечной лузги мельче 20 мкм, т.е. такая зола не должна задерживаться в котле. Соответственно наличие натрубных отложений золы в котельных пучках должно объясняться процессами их формирования из потока дымовых газов. Таким образом, летучая зола в первую очередь есть продукт протекающих в котле топочных и сопутствующих процессов.

Опыт эксплуатации котла КЕ-10-14 ОГВ при совместном и раздельном сжигании газа и лузги наглядно показывает существенное влияние локального перегрева золы в ядра факела газовой горелки. На рис.7. приведены

некоторые результаты анализа проб отложений: с топочных экранов, из вихревой топки, не охлаждаемых стенок камеры дожигания, с пода первого котельного пучка и из бункеров 1-2, 2-3, 3 и экономайзера.

Экр ВТ КД КП1 1-2 2-3 КП3 ЭКО

Рис.7. Результаты анализа проб отложений с топочных экранов, из вихревой топки, не охлаждаемых стенок камеры дожигания, с пода первого котельного пучка и из бункеров 1-2, 2-3, 3 и экономайзера

Из всех анализов наиболее ярко проявляется влияние высокотемпературной обработки золы на содержание калия К и карбонатов CO_3^{2+} . В вихревой топке BT и на стенах камеры дожигания КД их содержание в отложениях минимальны и особенно при совместном сжигании лузги и газа, когда температура в топке увеличивается с 800-950°C до 1100-1300°C. Таким образом эти данные доказывают наличие интенсивной возгонки из золы. По аномально высокой концентрации Kи СО₃ в золовых отложениях на экранах, в том числе и в тупиковых зонах, наглядно видно. что образование отложений золы имеет конденсационный механизм их формировании из возгонов. Таким образом, формирование и укрупнение частиц золы происходит на поверхностях и преимущественно на поверхностях нагрева, как более холодных. Далее натрубные отложения могут отрываться и выноситься потоком.

Наиболее мощные натрубные отложения наиболее интенсивно формируются на первых по ходу дымовых газов рядах труб, рис.6. Толщина слоя отложений достигает 20—12 мм. По структуре эти отложения жесткие, хотя и хрупкие. При обрушении эти длинные корообразные отложения разруша-

ются на не выносимые потоком довольно крупные куски и заполняют газоход.

По опыту работы котлов, при ухудшении охлаждения топки, процесс зарастания первых рядов труб может приобретать лавинообразный характер. Очистка первого котельного пучка и экранов топки генератором ударных волн на работающем котле оказалась малоэффективной. Отложения содержат стекловидные расплавленные включения и при ударах уплотняются.

В зоне более низких температур в котле и экономайзере, отложения рыхлые, легко удаляемые. Эти отложения образуются с обеих сторон труб.

Отказ от совместного сжигания лузги и природного газа, а так же разработанные НИЦ ПО «Бийскэнергомаш» режимные мероприятия и методы очистки топки и трубных пучков на сегодня обеспечили стабильную работу всех поставленных и реконструированных котлов.

На основе вихревых топок двухсторонним воспламенением слоя на колоснике, в ЗАО ПО «Бийскэнергомаш» и ОАО БиКЗ освоено производство котлов КВ–1,86 ВД, работающих на древесных отходах. Первые

котлы установлены в котельной Абазинского лесокомбината, г. Абаза. Они работают с отопительного сезона 1996/1997 г. Их эксплуатация подняла рентабельность лесокомбината. Исключение затрат на оплату отопления от ТЭЦ, на вывоз отходов и содержание отвала за один сезон компенсировало строительство котельной, снизилась пожарная опасность.

Для сжигания сухих опилок и пыли шлифования, том числе ДСП, вихревые топки так же высокоэффективны. Реконструкция котла ДКВр-10, «Энергия РК», г. Бердск, показала, что глубокое выжигание горючих из легких уносимых частиц легко обеспечивается, в том числе и благодаря оригинальной системе подачи острого дутья. Экономический эффект от внедрения котла ДКВр-10 составил 3,2 млн. рублей в год.

ЛИТЕРАТУРА

- 1. Пузырев Е.М., Щуренко В.П. Вихревая камера сгорания. Патент РФ №2132512. 27.06.99. Бюл. № 18.
- 2. Фокин Г.М., Шарапов М.А., Пузырев Е.М. и др. Вихревая топка. Заявка на патент РФ №2001122639 (024039). Приоритет от 16 авг. 2001 г.

Taoninga 1-1 coynibratisi vicilishaniwi konsa KE-10-14-OFB							
Величина	Обозн. Разм.		Значения при нагрузках				
			1	2	3	4	5*
1. Расход пара	D_n	кг/с	2,17	2,83	2,92	3,2	1,56
2. Давление пара	P_{δ}	МПа	0,91	1,08	1,1	1,15	0,63
3. Давление газа	Pe	кПа	3,5	3,5	6,0	7,5	0
4. Обороты питателя	n _{об}	%	40	60	40	30	75
5. Давление ГВС	$P_{\Gamma BC}$	кПа	1,0	1,75	0,6	0,58	0,3
6. Температура ГВС	$t_{\Gamma BC}$	°C	-10	-12	-10	-12	100
7. Разрежение в топке	P_m	Па	-30	-30	-30	-30	-30
8. Температура в топке	g_{u}	°C	833	840	950	835	960
9. Температура газов в камере дожигания	$g_{\kappa \partial}$	°C	827	1030	1050	1045	830
10. Температура газов за котлом	$\mathcal{G}_{\!\scriptscriptstyle{K}}$	°C	364	370	380	375	370
11. Температура уходящих газов	g_{yx}	°C	182	182	184	180	197
12. Избыток воздуха в уходящих газах	$\alpha_{\rm vx}$		3,01	2,53	2,27	2,31	3,2
13. Содержание СО в уходящих газах	C _{co}	мг/м ³	0	11	0	0	38
14. Содержание NO _x в уходящих газах	C _{NOx}	мг/м ³	203	213	144	145	213
15. Потери тепла с уходящими газами	q_2	%	15,8	12,7	11,9	11,8	17,8
16. Потери тепла от химической неполноты	9 3	%	<0,1	<0,1	<0,1	<0,1	<0,1
сгорания топлива							
17. Потери тепла от механической непол-	q_4	%	<0,1	<0,1	<0,1	<0,1	<0,1
ноты сгорания							
18. Потери тепла в окружающую среду	q_5	%	0,5	0,5	0,5	0,5	0,5
19. КПД котла	η_{6p}	%	83,7	86,8	87,6	87,7	81,7

Таблица 1-Результаты испытаний котла КЕ-10-14 ОГВ

ГВС — газовоздушная смесь (дутье с рециркуляцией).