ЛИНЕЙНЫЕ И НЕЛИНЕЙНЫЕ РЕЖИМЫ КОЛЕБАНИЙ ТИПА МЕДЛЕННОЙ ВОЛНЫ ДЛЯ МАГНИТНОЙ ТРУБКИ В КОНВЕКТИВНОЙ ЗОНЕ И АТМОСФЕРЕ СОЛНЦА

С.В. Алексеенко, Г.И. Дудникова, В.А. Романов, Д.В. Романов, К.В. Романов, И.В. Семенов

ВВЕДЕНИЕ

В настоящей работе исследуется переход линейных колебаний магнитной трубки в нелинейные при росте амплитуды скорости для медленной моды колебаний. Показано, что при незначительном увеличении амплитуды скорости продольных колебаний в зоне проникающей конвекции магнитная трубка теряет устойчивость и с высокими скоростями выбрасывается в солнечную атмосферу.

Расчетным путем определены критические значения напряженности магнитного поля в зависимости от глубины зоны проникающей конвекции и скорости продольных колебаний, разделяющие режимы выноса магнитной трубки в солнечную атмосферу от режимов колебаний магнитной трубки в пределах конвективной зоны.

Определен физический механизм глобальных осцилляций Солнца с периодами более 100 часов. Выделены тенденции временной эволюции спектра глобальных осцилляций в данном диапазоне на различных фазах цикла солнечной активности.

Проведены предварительные расчеты по динамике зарождения корональных дыр в солнечной атмосфере. Определены основные закономерности эволюции глобальной структуры распределения корональных дыр в солнечной атмосфере в зависимости от фазы цикла солнечной активности.

МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Колебания тонкой магнитной трубки в незамагниченной плазме в приближении идеальной одножидкостной МГД описываются следующей системой дифференциальных уравнений [2, 1]:

$$\frac{\partial \vec{r}}{\partial t} = \vec{\upsilon} , \qquad (1)$$

$$\frac{\partial \vec{\upsilon}}{\partial t} = \frac{\vec{\ell}(\vec{\ell},\vec{f})}{\rho_{i}} + \frac{\vec{f} - \vec{\ell}(\vec{\ell},\vec{f})}{\rho_{i} + \rho_{e}}, \qquad (2)$$

$$\vec{\mathbf{f}} = \frac{\mathbf{H}\sigma\rho_{i}}{4\pi} \cdot \frac{\partial}{\partial s} \left(\mathbf{H}\vec{\ell}\right) + \left(\rho_{i} - \rho_{e}(\vec{\mathbf{r}})\right) \cdot \vec{\mathbf{g}}(\vec{\mathbf{r}}), \quad (3)$$
$$\mathbf{H}\sigma = \text{const} \quad . \quad (4)$$

$$\sigma = \text{const}$$
, (4)

ПОЛЗУНОВСКИЙ ВЕСТНИК № 1 2004

$$\frac{\mathbf{p}_{i}}{\boldsymbol{\rho}_{i}^{\gamma}} = \text{const}, \qquad (5)$$

$$p_{i} + \frac{H^{2}}{8\pi} = p_{e}(\vec{r}),$$
 (6)

$$\vec{\ell} = \sigma \rho_i \cdot \frac{\partial \vec{r}}{\partial s}, \quad (\vec{\ell}, \vec{\ell}) = 1,$$
 (7)

где $s = \rho \sigma \phi$ лагранжева массовая переменная. Форма тонкой магнитной трубки задается однопараметрической кривой $\vec{r}(s)$ (рис. 1). В уравнении движения (2) выделены продольная и поперечная составляющие вектора $\vec{\ell}$ (единичный вектор, направленный вдоль магнитной трубки) компоненты ускорения. Для поперечной компоненты движения взаимодействие с внешней средой и соответствующие граничные условия на поверхности трубки учитываются как коэффициент присоединённой массы. Движение магнитной трубки исследуется в адиабатическом приближении (5). Для достаточно малых скоростей движения выполняется условие баланса давлений газа внутри и снаружи магнитной трубки (6).

Необходимые для замыкания системы уравнений (1-7) зависимости $p_e(\vec{r})$, $\rho_e(\vec{r})$, $\vec{g}(\vec{r})$ определяются выбранной моделью внутреннего строения Солнца и структурой стационарной солнечной атмосферы [4, 5, 6].

Для обезразмеривания системы уравнений (1-7) удобно выбрать физические параметры, соответствующие уровню фотосферы Солнца:

$r_0 = 10^9 cm$	$ ho_0 = 10^{-6} r / cm$
$p_0 = 10^5$ дин /	$T_0 = 10^4 K$
$W_0 = p_0 \cdot v_0 = 10^{21/2} \text{эрг} / \text{cm}^2 / \text{c}$	
$t_0 = r_0 / v_0 = 10^{7/2} c$	
$\upsilon_0 = \sqrt{p_0 / \rho_0} = 10^{11/2} \text{cm} / \text{c}$	
$\epsilon_{_0}=p_{_0}/\rho_{_0}=10^{_{11}}\textrm{spr}/\textrm{r}$	

Решение ищем в виде стоячей волны.

$$\delta \mathbf{r} = \cos(\kappa s) \sin(\omega t) , \qquad (8)$$

 $\delta x = A_x \delta r_s^{\dagger} = -kA_x \sin(ks)\sin(\omega t).$ (9)

Решение системы уравнений (1-7) свок биквадратному уравнению для дится $(\omega^2 < 0)$, имеющему два корня. Эти корни отвечают изгибным и медленным волнам (рис.2), связанным между собой силами гравитации: к возвращающей силе натяжения магнитного поля добавилась выталкивающая сила Архимеда. Расчётным путём установлено, что ниже фотосферного уровня по данным модели внутреннего строения Солнца из работы [4] дискриминант биквадратного уравнения всегда положителен, следовательно, исключается случай комплексных $\omega_{1,2}^2$. Это означает, что любая из волн или устойчива и колеблется без затухания ($\omega^2 \ge 0$), либо неустойчива ($\omega^2 < 0$). Режимы с релаксационным затуханием отсутствуют. Этот результат является принципиальным для всех физических процессов активного Солнца: они протекают либо в стабильном режиме, либо носят взрывообразный характер [7].

ОСОБЕННОСТИ ПЕРЕХОДА ЛИНЕЙНЫХ РЕЖИМОВ КОЛЕБАНИЙ МАГНИТНОЙ ТРУБКИ В НЕЛИНЕЙНЫЕ ДЛЯ МЕДЛЕННЫХ ВОЛН

На рис.3 представлены результаты расчёта линейного режима колебаний магнитной трубки для медленной волны со следующими начальными условиями: трубка в начальный момент времени (рис. 1) расположена на глубине 216616 км ниже фотосферного уровня в зоне лучистого переноса. Напряжённость магнитного поля равна $5 \cdot 10^5$ Гс. Исследуется 5-я мода колебаний медленной волны (m=5). Амплитуда скорости колебаний равна $\upsilon_0 = 1$ м/с. Для сравнения: местная скорость звука $C_s = 234,382$ км/с [4]. Исследуется режим глубоко дозвуковых колебаний.

Рис.4

По данным внутреннего строения Солнца из работы [4] для расчётного режима $k = 0,145 \cdot 10^{-7}$, $A_x = -0,137257 \cdot 10^{12}$. Период колебаний T=58,8 часа. Результаты расчёта (рис.3) с высокой точностью совпадают с аналитическим решением (8, 9) для линейных колебаний.

Если амплитуду радиальных колебаний незначительно увеличить ($\upsilon_0 = 5$ м/с на рис.4), то характер колебаний качественно меняется. И хотя, по-прежнему, колебания проходят в глубоко дозвуковом режиме, решающим является следующее обстоятельство. Из формул (8, 9) следует, что амплитуда радиальных колебаний трубки и амплитуда колебаний вещества вдоль магнитной трубки отличаются множителем $-k \cdot A_x$. В рассматриваемом режиме ($|k \cdot A_x| = 1,99 \cdot 10^3$) эти амплитуды различаются на три порядка.

Это главная особенность реализации медленных волн на Солнце. При малых радиальных амплитудах колебаний (порядка м/с) реализуются потоки газа внутри магнитной трубки с высокими скоростями (порядка км/с). Продольные колебания газа быстро становятся доминирующими. В центральной части образуется перехлёст магнитной трубки, который с ростом радиальной компоненты скорости нелинейно растёт с образованием двух корональных транзиентов в пределах одной гармоники колебаний (рис.5).

С ростом напряжённости магнитного поля (рис.5 (a, b)) для формирования корональных транзиентов скорость радиального возмущения требуется существенно увеличить. С ростом волнового числа m корональные выбросы также возможны (рис.5b), но уже при существенно более высоких значениях радиальной скорости колебаний магнитной трубки.

Таким образом эффект формирования корональных выбросов (корональных транзиентов) определяется разницей амплитуд радиальной и продольной скоростей газа магнитной трубки через множитель $k \cdot A_x$ по формулам (8, 9). Исследуем эту величину на различных глубинах зоны лучистого переноса по данным модели внутреннего строения Солнца из работы [4].

Из результатов расчёта следует характерный диапазон изменения параметра A_x :

$$10^{10} < |A_x| < 10^{13} \div 10^{14}$$
. (10)

С ростом волнового числа т значение A_x резко уменьшается. При приближении к верхней границе зоны лучистого переноса (к нижней границе конвективной зоны) значение A_x также резко спадает.

Волновой вектор меняется в диапазоне $10^{-8} \le k \le 10^{-6}$, и при приближении к верхней границе зоны лучистого переноса его значения растут, хотя и не очень резко.

Для распределения результирующего множителя $k \cdot A_{\star}$ определяющим является изменение параметра A_{\star} . На рис.6 представлены распределения множителя $k \cdot A_{\star}$ в зависимости от глубины зоны лучистого переноса для различных волновых чисел m. Характерный масштаб изменения данного параметра $10^2 \le k \cdot A_{\star} \le 10^5$.

ПОЛЗУНОВСКИЙ ВЕСТНИК №1 2004

При приближении к верхней границе зоны лучистого переноса значения множителя $k \cdot A_x$ падают. Особенно ярко это выражено для длинноволновых мод колебаний. Для высших гармоник данный эффект практически отсутствует. С ростом волнового числа m значения множителя $k \cdot A_x$ резко падают.

Для анализа образования супергрануляции на фотосферном уровне [10] необходимо исследовать режим подъёма магнитной трубки к фотосферному уровню без выхода в солнечную атмосферу. На рис.7 приведён конкретный режим такого подъёма.

Возникает своеобразный эффект отражения от фотосферного уровня и расширения магнитной структуры внутри конвективной оболочки Солнца. Отразившись от фотосферного уровня, магнитная трубка падает на дно конвективной зоны, способствуя возникновению динамических конвективных течений с пространственными масштабами порядка размера реализуемых магнитных структур.

С ростом напряжённости магнитного поля в трубке величины радиальной скорости, обеспечивающей выброс к фотосферному уровню, растут. На рис.8 (a,b) представлены сводные результаты расчёта критических значений напряжённости магнитного поля в зависимости от глубины ниже фотосферного уровня и радиальной скорости возмущения для гармоники m=3 (рис.8а) и m=5 (рис.8b). Для напряженностей поля ниже критического уровня происходит вынос магнитной трубки в солнечную атмосферу. Трубка с напряжённостью поля ниже критического уровня не покидает пределов конвективной зоны и участвует в формировании супергрануляционных течений.

Тем не менее, общая тенденция увеличения $H_{_{\rm KP}}(\upsilon_{_0},h)$ с уменьшением волнового числа m на данных распределения уверенно

прослеживается. Для младших гармоник (m=1,2) эта тенденция выражена особенно ярко. Вынос магнитной трубки для случая колебаний медленной волны с малыми волновыми числами реализуется наиболее легко.

С уменьшением $H_{\kappa p}(\upsilon_0, h)$ критическая скорость радиальных колебаний также резко падает. Магнитные трубки с малыми значениями напряжённости поля неустойчивы при всех значениях волнового числа m и все выносятся в солнечную атмосферу.

ЗАКЛЮЧЕНИЕ

Сформулируем результаты проведенного исследования. В работе детально исследовано развитие неустойчивости медленной волны для верхних слоев зоны лучистого переноса в диапазоне глубин $2 \cdot 10^5 \div 2.5 \cdot 10^5$ км.

Главный результат настоящей работы приведен на рис.6 и рис.8. Величина множителя $k \cdot A_x$, определяющего отношение скоростей поперечных и продольных колебаний газа в магнитной трубке, резко падает с ростом волнового числа т. Гармоники с большой длиной волны существенно менее устойчивы, чем высокочастотные гармоники колебаний типа медленной волны.

Рис.8 является фактически следствием результатов, представленных на рис.6: критические значения скорости продольных ко-

ЛИНЕЙНЫЕ И НЕЛИНЕЙНЫЕ РЕЖИМЫ КОЛЕБАНИЙ ТИПА МЕДЛЕННОЙ ВОЛНЫ ДЛЯ МАГНИТНОЙ ТРУБКИ В КОНВЕКТИВНОЙ ЗОНЕ И АТМОСФЕРЕ СОЛНЦА

лебаний, разделяющие режимы прямого выноса магнитной трубки в солнечную атмосферу и режимы колебаний магнитной трубки внутри конвективной зоны, зависят только от напряженности магнитного поля и фактически не зависят от глубины зоны лучистого переноса (зоны солнечного Динамо [11]). Увеличение глубины выноса магнитной трубки к фотосферному уровню компенсируется ростом множителя $k \cdot A_x$ с ростом глубины зоны Динамо.

Полученные результаты позволяют понять основные закономерности реализации корональных дыр и развития супергрануляции на фотосферном уровне в течении цикла солнечной активности [7].На больших глубинах неустойчивы только младшие гармоники (m=1, 2). Как следствие реализуется вынос к фотосферному уровню и в солнечную атмосферу крупномасштабных арочных структур (рис. 6). При дальнейшем подъеме всплывающих магнитных полей к верхнему краю зоны Динамо становятся неустойчивыми старшие гармоники. Главный фактор их неустойчивости — падение критических значений напряженности магнитного поля с уменьшением глубины зоны Динамо (рис.8). На верхнем краю зоны Динамо неустойчивы все гармоники. И все гармоники принимают участие в формировании структуры корональных дыр, супергрануляции и структуры фоновых магнитных полей на фотосферном уровне [10, 11, 12, 13].

В настоящей работе определен физический механизм зарождения корональных дыр в солнечной атмосфере. Данное явление обусловлено развитием неустойчивости колебаний магнитной трубки типа медленной волны и тем обстоятельством, что эта неустойчивость развивается при очень низких значениях скорости продольных колебаний магнитной трубки (рис.8), которые заведомо реализуются в зоне Динамо [11]. Результаты расчетов позволяют определить характерные значения скоростей поднимающегося газа в корональных дырах (рис.6) на фотосферном уровне. напряженности магнитного поля, значения температуры и других термодинамических параметров газа. Эти результаты допускают прямое сопоставление с наблюдательными данными, что позволяет обосновать корректность предложенного механизма зарождения корональных дыр.

ЛИТЕРАТУРА

1. Alekseenko S.V., Dudnikova G.I., Romanov V.A., Romanov D.V., Romanov K.V. Magnetic field instabilities in the Solar convective zone //Russian Journal of Engineering Termophys, 2000. V.10. №4.-P.243-262.

2. Spruit H.C., Zweibel E.G. Convective instability of thin flux tubes //Solar Phys., 1979. V.62. -P.15-22.

3. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука. 1986. -736 с.

4. Cristensen-Dalsgaard J., Dappen W., Ajukov S.V., Andersen E.R., etc. The current state of Solar modeling. Science, 1996. V.272. -P.1286.

5. Vernazza J.E., Noyes R.W..Inhomogeneous Structure of the Solar Chromosphere from Lyman-Continuum Data// Solar Phys., 1972. V.21. -P.358-374.

6. Vernazza J.E., Avertt E.H., Loeser R.Structure of the Solar chromosphere. Basic computation and summary of the results//Astrophys. J., 1973. V.184. -P.605-631.

7. Северный А.Б. Некоторые проблемы физики Солнца. М.: Наука, 1988: -220с.

8. Романов Д.В. Математическое моделирование влияния многомерности на эволюцию магнитных полей и структуру аномального прогрева солнечной атмосферы //Кандидатская диссертация. Красноярск. 2003. -128с.

9. Романов К.В. Математическое моделирование физических процессов аномального прогрева солнечной атмосферы //Кандидатская диссертация. Новосибирск. 2003. -145с.

10. Зирин Г. Солнечная атмосфера //М.: Мир. 1969.-504с..

11. Романов В.А., Романов К.В.. Структурный анализ зоны действия Динамо //Астрон. журн., 1993. Т.70. -С.880-887.

12. Gilman R.A. Fluid dynamics and MHD of the Solar convection zone tachocline.Curent undestending and unsolved problems (invited review) //Solar Phys 2000. V.192. -P.27-48.

13. Mason H.E., Young P.R., Pike C.D., Harrison R.A., Fludra A., Bromage B.J.I., del Zanna G.Application of Spectroscopic Diagnostics to Early Observations with the SOHO Coronal Diagnostic Spectrometer //Solar Phys., 1997. V.170. -P.143-162.