АНАЛИЗ СХЕМ РАСКЛАДКИ ПРОГОНОВ ИЗ ХОЛОДНОГНУТЫХ ПРОФИЛЕЙ

Т. Е. Легалова, А. А. Кикоть

Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул

Проанализированы схемы раскладки прогонов из холодногнутых профилей, выполнены расчеты для Z-образных профилей на вертикальную гравитационную и подъёмную (ветровую нагрузку). Определены наиболее рациональные схемы раскладки прогонов для Z-образных профилей.

Ключевые слова: стальной тонкостенный холодногнутый профиль, *Z*-образное сечение, прогон, CFSteel 3.1.

Эффективным направлением внедрения технологии ЛСТК на строительный рынок является применение тонкостенных профилей в качестве прогонов покрытий. Такие прогоны изготавливаются преимущественно методом холодной прокатки стальной оцинкованной полосы. Наиболее распространенными являются профили Z-, C- и Σ-образного сечения

Целью данной работы является определение рациональных схем раскладки прогонов из холодногнутых Z-образных профилей.

Анализ систем прогона, применяемых такими компаниями как Ayrshire, Metsec, Lindab Group, Stratco, Kingspan, Pruszynski показал, что наиболее распространенными являются следующие системы:

1. Разрезная однопролетная схема.

Прогоны укладываются на несущие конструкции по однопролетной схеме без перехлёстов и накладок. Данная система представлена на рисунке 1.

2. Система Н.Е.В. – однопролетные прогоны с накладками или перехлёстами.

В основном применяются для зданий с пятью и более пролётами. Максимальный пролет достигает 15 м. Усиленные прогоны располагаются в крайних шагах опорных конструкций. Соединения прогонов в единую конструкцию осуществляется с помощью накладок такого же сечения, как и прогон наружного шага и они длиннее, чем стандартные накладки. Все стыки внутренних прогонов осуществляются на накладках такого же сечения, как и прогоны во внутренних пролетах. Система является неразрезной балкой. Данная схема представлена на рисунке 2. Усиление крайних пролётов достигается дву-

мя способами: увеличением толщины или применение двойного прогона.

3. Система Н.Е.В. – двухпролётные прогоны с накладками или перехлёстами.

Внутренние прогоны в двухпролетном исполнении. Соединения прогонов в единую конструкцию осуществляется с помощью накладок такого же сечения, как и прогон наружного шага и они длиннее, чем стандартные накладки. Все стыки внутренних прогонов осуществляются на накладках такого же сечения, как и прогоны во внутренних пролетах. Система является неразрезной балкой. Данная система представлена на рисунке 3.

4. Система с накладками – однопролетные прогоны.

Часто используются в относительно коротких зданиях, где невозможно использовать Н.Е.В. системы. Накладки обеспечивают неразрезность цепи прогонов, а также усиливают сечение прогонов на опоре. На предпоследней раме накладка устанавливается в любом случае. Данная система представлена на рисунке 4.

5. Системы с перехлестами.

Для зданий с количеством пролетов прогонов 4 и более. Усиленные прогоны располагаются в крайних шагах, а стандартные прогоны во внутренних шагах. Неразрезность обеспечивается перехлестом в местах опирания. Чаще применяются для Z-образных прогонов. Данная система представлена для однопролетной схемы на рисунке 5 и двухпролетной схемы на рисунке 6.

Из систем раскладки прогонов видно, что в основном они состоят из комбинаций однопролетной и двухпролетной схем с накладками или перехлестами и без них.

Рисунок 1 – Разрезная однопролетная схема

Рисунок 3- Система Н.Е.В. – двухпролётные прогоны с накладками или перехлёстами

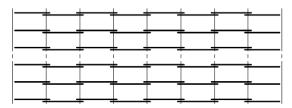


Рисунок 5 – Система однопролетная с перехлестами

Поэтому целесообразно рассчитать 4 вида схем раскладки прогонов:

- 1) однопролетная схема,
- 2) однопролетная схема с перехлёстами.
- 3) двухпролетная схема,
- 4) двухпролетная схема с перехлёстами.

В расчет в качестве примера был принят сортамент Z-образных профилей в соответствии СТО 001-79850813-2015 [5]. Уклон кровли: 6° , 15° , 25° ; длина пролета L = 4,5 м, шаг прогонов 1,5 м, R_v = 240 МПа.

Постоянная нагрузка от кровли 38,19 кг/м²; снеговая нагрузка для прогонов 240 кг/м² (IV-снеговой район), в соответствии с [2].

Все расчеты выполнены с помощью специализированной программы расчета элементов и конструкций из стальных тонкостенных холодногнутых профилей CFSteel версии 3.1 [4], в которой расчёт прогонов выполняется в соответствии с положениями Раздела 10 EN 1993-1-3 [3]. Учитывались гравитационная нагрузка и постоянная нагрузка от отсоса ветра (III – ветровой район) [2].

В результате расчетов были подобраны сечения профилей прогонов Z-образного сечения, для кровли без связей и со связями: 1,

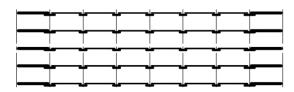


Рисунок 2 – Система Н.Е.В. – однопролетные прогоны с накладками или перехлёстами

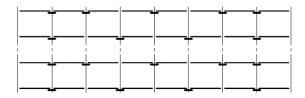


Рисунок 4 – Система с накладками – однопролетные прогоны

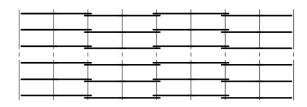


Рисунок 6 – Система двухпролетная с перехлестами

2 и 3 связи. В таблице 1 показаны результаты для однопролетной схемы и их запас несущей способности при прохождении проверок по I и II группе предельных состояний.

расчету Аналогично однопролетной расчитаны: схемы были однопролетная схема с перехлёстами; двухпролетная схема; двухпролетная перехлёстами, схема С данные представлены В таблицах 1-3 соответственно.

По данным таблиц 1-4 были построены графики зависимости массы 1 м.п. профиля от количества связей в схемах раскладки прогонов. Причем, в однопролетных схемах учитывалась возможность поставноки от 0 до 3 связей; для двухпролетных схемах учитывались два варианта: с одной связью и без связей. Данные графики представлены на рисунке 7.

Из графика видно, что для однопролетной схемы (рисунок 7) добавление третьей связи никак не влияет на вес 1 п/м профиля, поэтому экономичнее применять 2 связи. Самые выгодные варианты при уклоне 15° и 25° с двумя связями, самые не выгодные — с одной связью при уклоне 6° и 15°.

Таблица 1 – Профили однопролетной схемы

		Подъёмная нагрузка							
Уклон,гра д.	Связи,шт.	Сечение профиля	Вес 1 м.п., кг	Проверка прочност и по нормальн ым напряжен иям(%)	Проверка несущей способно сти на сдвиг (%)	прогибов(%)		Проверка устойчив ости свободно го пояса(%)	Проверка несущей способно сти на сдвиг (%)
	0	Z220, t = 2,5мм	7,31	2,96	84,26	58,1875	91,5	88,9566	98,5
6	1	Z250, t = 2,5мм	8,35	12,61	84,24	71,9565	93,8	92,3479	98,5
8	2	Z200, t = 2,5мм	6,92	3,54	84,3	47,4913	90,8	89,6957	98,4
	3	Z200, t = 2,5мм	6,92	1,77	84,3	47,7913	90,8	90,4783	98,4
	0	Z220, t = 2,5мм	7,31	5,76	84,72	59,3933	90,8	90,4783	98,4
15	1	Z250, t = 2,5мм	8,35	15,12	84,69	72,7344	93,8	92,3478	98,5
13	2	Z220, t = 2mm	5,91	2,66	76,42	49,7083	90,3	89,0417	97,6
	3	Z220, t = 2mm	5,91	0,69	76,42	49,7083	90,3	89,875	97,6
25	0	Z220, t = 2,5мм	7,31	11,57	85,67	61,9215	91,9	89,3333	98,5
	1	Z250, t = 2мм	6,69	3,79	76,83	67,9503	92,4	90,5	97,5
	2	Z220, t = 2mm	5,91	8,79	77,88	52,82	90,3	89,0833	97,6
	3	Z220, t = 2mm	5,91	6,94	77,88	52,82	90,3	89,9166	97,6

Таблица 2 – Профили однопролетной схемы с перехлёстами

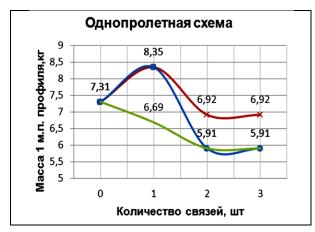

	Гравитационная нагрузка									Подъёмная нагрузка		
Уклон,гра д.	Связи,шт.	Сечение профиля	Вес 1 м.п., кг	Проверка прочност и по нормальн ым напряжен иям(%)	Проверка устойчив ости свободно го пояса(%)	способно	Проверка прогибов(%)		Проверка устойчив ости свободно го пояса(%)	Проверка несущей способно сти на сдвиг (%)		
	0	Z250, t = 2,5мм	8,35	44,86	11,2248	92,12	95,3326	95,9	97,33	98,7		
6	1	Z200, t = 2мм	5,59	33,57	5,3455	78,19	89,1482	94,1	96	97,8		
	2	Z180, t = 2мм	5,27	34,04	14,013	78,23	86,0755	93,4	95,62	97,8		
	3	Z160, t = 2мм	4,95	24,16	3,9255	78,29	86,0755	92,2	95,25	97,8		
	0	Z250, t = 2,5мм	8,35	46,45	13,7774	86,22	95,4493	95,7	97,21	98,6		
15	1	Z200, t = 2мм	5,59	64,52	8,0671	78,81	89,4594	93,8	95,86	97,8		
15	2	Z160, t = 2мм	4,95	24,64	1,9525	78,81	82,1082	91,9	94,69	97,8		
	3	Z160, t = 2мм	4,95	73,66	6,688	78,81	82,1082	95,2	96,6	98,6		
25	0	Z220, t = 2,5мм	7,31	38,57	5,5096	78,81	93,6212	93,2	95,34	97,8		
	1	Z180, t = 2мм	5,27	29,42	1,0196	80,16	87,2813	93,2	95,34	97,8		
	2	Z160, t = 2мм	4,95	29,29	8,0038	80,21	83,2361	92,2	94,9	97,8		
	3	Z160, t = 2мм	4,95	30,88	12,4471	80,21	83,2361	92,2	94,9	97,8		

Таблица 3 – Профили двухпролетной схемы

Гравитационная нагрузка									Подъёмная нагрузка		
Уклон,гра д.	Связи,шт.	Сечение профиля	Вес 1 м.п., кг	Проверка прочност и по нормальн ым напряжен иям(%)	устоичив ости	несущей способно	Проверка	Проверка прочност и по нормальн ым напряжен иям(%)	устойчив ости свободно	Проверка несущей способно сти на сдвиг (%)	
6	0	Z300, t = 2,5мм	10,31	24,46	7,3957	80,25	93,5434	95,1	97	98,2	
	1	Z250, t = 2mm	6,69	15,03	5,0875	68,22	85,3753	93,6	95,9	98,7	
15	0	Z250, t = 3мм	10,01	22,22	2,8214	68,79	90,5873	93,6	95,9	98,7	
	1	Z220, t = 2,5мм	7,31	11,38	1,3214	80,9	83,1195	91,6	94,04	98,1	
25	0	Z250, t = 3мм	10,01	27,02	8,8196	87,61	91,1707	93,9	96,12	98,8	
	1	Z220, t = 2,5mm	7,31	16,85	7,4118	82,08	84,1695	92	94	98,1	

Тоблица 4 Профили	двухпролетной схемы с перехлёстами
таолица 4 — гтрофили	двухпролетной схемы с перехлестами

Гравитационная нагрузка								Подъёмная нагрузка		
Уклон,гра д.	Связи,шт.	Сечение профиля	Вес 1 м.п., кг	Проверка прочност и по нормальн ым напряжен иям(%)	Проверка устойчив ости свободно го пояса(%)	способно	Проверка прогибов(%)	прочност	устойчив ости свободно	Проверка несущей способно сти на сдвиг (%)
6	0	Z250, t = 3мм	10,01	30,71	5,5146	89,37	95,7605	95,3	97,47	99
ь	1	Z220, t = 2мм	5,91	22,82	8,9459	77,61	90,5485	93	96,13	97,6
45	0	Z250, t = 3мм	10,01	32,71	8,2335	89,67	95,8771	95,4	97,52	99
15	1	Z220, t = 2мм	5,91	25,04	7,7192	78,25	90,8207	93	96,13	97,6
25	0	Z250, t = 3мм	10,01	36,86	13,8974	90,31	96,1105	95,5	97,56	99
	1	Z200, t = 2мм	5,59	18,81	1,674	78,41	89,187	92,1	95,74	97,6



Рисунок 7 – Графики зависимости массы 1 м.п. профиля от количества связей для схем раскладки прогонов

По графику для однопролетной схемы с перехлёстами (рисунок 7) можно сказать, что при добавлении связей уменьшается сечение профиля прогона, в результате чего вес 1 п/м уменьшается от 23 до 35%. Худшим вариантом являются схемы без связи с уклоном 6°, 15°, 25°. Разница в массе 1 м/п профиля при добавлении 1, 2 или 3 связей небольшая во

всех трех случаях, поэтому по металлоёмкости выгоднее на 6% схема с одной связью с уклоном 25° и по трудозатратам, чем схемы с 2-мя и 3-мя связями. Из графика для двухпролетной схемы (рисунок 7) видно, что двухпролетная схема не выгодна при схеме без связей, но выгодна при постановке 1 связи. При добавлении связей уменьшается сече-

ние профиля прогона, в результате чего вес 1 п/м уменьшается на 36%. Самой выгодной схемой является схема с 1 связью при уклоне 25°.

По графику для двухпролетной схемы с перехлёстами (рисунок 7) видно, что двухпролетная схема с перехлёстами не выгодна при схеме без связей, но выгодна при постановке 1 связи. При добавлении связей уменьшается сечение профиля прогона, в результате чего вес 1 п/м уменьшается на 44%.

Заключение

Наличие накладок или перехлёстов снижает расход стали. Выбор рациональной схемы раскладки прогонов зависит от уклона кровли. При уклоне 6° наиболее экономичной является однопролетная схема без связи, для 15° однопролетная с перехлёстами с двумя связями, для 25° однопролётная с перехлёстами с 1 и 2-мя связями.

СПИСОК ЛИТЕРАТУРЫ

1. ГОСТ 24045-94. Профили стальные листовые гнутые с трапециевидными гофрами для строительства. – Москва : изд-во стандартов, 1994. – 4 с.

- 2. СП 20.13330.2011. Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*. Введ. 2011-05-20. М. : ЦНИИСК им. В.А. Кучеренко, 2011. 76 с.
- 3. EN 1993-1-3: 2004. Eurocode 3: Design of steel structures. Part 1-3: General rules. Supplementary rules for cold-formed members and sheeting. Brussels: CEN (European Committee of Standartisation), 2004.
- 4. CFSteel v3.1. Руководство пользователя Программа расчёта элементов и конструкций из стальных тонкостенных холодногнутых профилей [Электронный ресурс] Электрон. версия печат. публ. URL: http://cfsteel.ru/index.php/about/cfsteel-v31 (дата обращения: 25.03.2017).
- 5. Стандарт организации 001-79850813 Профили холодногнутые из оцинкованной стали для строительства М.: ЦНИИСК им. В.А. Кучеренко Москва, 2015.

Легалова Т.Е. – магистр ФГБОУ ВО АлтГТУ им. И.И. Ползунова, E-mail: tan-ya.legalova@mail.ru.

Кикоть А.А. – к.т.н., доцент кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И.И. Ползунова, E-mail: deltaing@mail.ru.

УДК 692.232.42

PACYET HABECHЫХ ФАСАДНЫХ СИСТЕМ В ПРОГРАМНОМ КОМПЛЕКСЕ SCAD C УЧЕТОМ ГОЛОЛЕДНЫХ НАГРУЗОК

О. В. Лобанова, Г. М. Бусыгина

Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул

В статье рассмотрен расчет навесного фасада на действие гололедных и ветровых нагрузок. В зависимости от применяемых нормативных документов нагрузки задаются с разными коэффициентами. Приводится сравнение усилий для несущей конструкции фасада. Расчет выполнен в программном комплексе SCAD.

Ключевые слова: навесной фасад, гололедные нагрузки, ветровые нагрузки, SCAD.

Навесной фасад представляет собой конструкцию из подсистемы, теплоизоляции и облицовочных панелей. Между слоем облицовки и утеплителем оставляется воздушная прослойка, через которую снизу вверх циркулирует воздух, не дающий влаге оседать на несущей стене.

Навесные фасады можно классифицировать по ряду признаков.

По виду облицовочного материала:

- металлические панели с полимерным покрытием;
- виниловые панели;

- сэндвич-панели;
- фиброцементные системы;
- термопанели;
- OSB-панели;
- каменные и керамогранитные панели;
- стеклянные навесные панели и другие.

По материалам несущей конструкции (направляющие):

- оцинкованная сталь;
- нержавеющая сталь;
- алюминий и его сплавы;
- дерево.

По типу крепления:

ПОЛЗУНОВСКИЙ АЛЬМАНАХ № 2 2017

156