ОПРЕДЕЛЕНИЕ ИНДУКЦИИ В ЭЛЕКТРОМАГНИТНОЙ ПЕЧИ ЭМU-5,7-60М МЕТОДОМ АМПЕРМЕТРА-ВОЛЬТМЕТРА

Г. Е. Левшин

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул, Россия

Приведены определения магнитной индукции методом амперметра-вольтметра в рабочем объеме электромагнитной печи с горизонтальным магнитным потоком, создаваемым изогнутым магнитопроводом U-образной формы. Метод рекомендован для оценки величины индукции как рабочего параметра индукционных печей при температурах до 1200 – 1400 °C.

Ключевые слова: метод амперметра-вольтметра, магнитная индукция, электромагнитные печи, изогнутый магнитопровод

THE DEFINITION INDUCTION OF ELECTROMAGNETIC FURNARE EMU-5,7-60M BY AMMETR-VOLTMETR

G. E. Levshin

Altai State Technical University, Barnaul, Russia

Given the definition of magnetic induction by the method of the ammeter-voltmeter in working volume of electromagnetic furnace with a horizontal magnetic flux generated by a curved magnetic core in a U-shape. The method recommended to assess the magnitude of induction as a working parameter of induction furnaces up to temperatures of 1200 - 1400 °C.

Keywords: method ammeter-voltmeter, magnetic induction, electromagnetic oven, curved yoke

Электромагнитные печи с горизонтальным магнитным потоком, создаваемым изогнутым магнитопроводом U-, О- или Собразной формы, предложены в 2013 г. Наличие магнитопровода позволяет увеличить значение рабочей индукции Ве между его полюсами в рабочем объеме печи [1 – 3]. Эти печи имеют ряд преимуществ по сравнению с известными индукционными индукторными печами, создающими вертикальный магнитный поток [4 – 6]. Однако сведения о величине рабочей индукции Ве в доступной литературе не обнаружены. Поэтому измеряли ее в магнитопроводе и рабочем объеме печи ЭМU-5,7-60М индукционным методом амперметра - вольтметра, имеющим погрешность до 5 - 8 % [7]. Метод достаточно прост и дешев в осуществлении, т. к. не требует дорогих и дефицитных приборов, а измерительная катушка выдерживает повышенные механические воздействия и температуру до 1200 - 1400 °С при изготовлении из нихрома (в отличие от датчика Холла милитесламетра Ш1-15У).

Для этого изготовили стационарную и переносную измерительные катушки ИК1 и ИК2, имеющие количество витков w=60 из провода Ползуновский альманах № 4 2016

ПЭВ медного эмалированного Ø 1,2 мм. Число витков измерительных катушек выбрали равным числу витков силовой электрической катушки (ЭК) печи. Они намотаны на электроизолированные двумя слоями ватмана полюсную часть U-образного магнитопровода и деревянный брусок (рисунок 1). Измерительная площадь сечения катушки ИК1 S_{ик1} =0,02945 м², а ИК2 S_{ик2}=0,028 м². Сочетание ИК1 и ИК2 позволяет определить вертикальную Вв и горизонтальную Вг составляющие вектора индукции. При этом катушка ИК1 позволяет определить только вертикальную Вів внутри полюсной части магнитопровода, а катушка ИК2 – и Вев в воздухе над этой частью магнитопровода при таком же расположении ее витков. Кроме того, катушка ИК2 позволяет определить горизонтальную Вег составляющую вектора индукции в воздухе между вертикальными полюсами U-образного магнитопровода при расположении плоскости витков практически параллельно полюсам.

Сначала катушку ИК2 укладывали посредине между полюсами на текстолитовой площадке (уровень h=0 мм), закрывающей силовую электрическую катушку печи (рисунок 1, а, б). Ее центр при этом находился на уровне h=45 мм. Затем под катушку ИК2 укладывали поочередно деревянные пластины толщиной 20 и 8 мм. Все измерения индуцированной катушками ИК1 и ИК2 ЭДС проводили тестером ТЛ-4М при частоте тока в сети 50 Гц и напряжении 400 В (или 225 В) по мультиметру мод. DT-838 и токе в силовой катушке печи lэк=150 А (или 81 А), который измеряли амперметром прямого включения мод. Э30 со шкалой 0 – 150 А (класс точности 1,5).

При этом ее низ постепенно подняли на высоту 128 мм (до торца полюса), а центр – на 173 мм (выше торца полюса) (рисунок 1, а). Потом уложили катушку ИК2 на торец левого полюса параллельно стационарной катушке ИК1 (рисунок 1, в).

Рисунок 1 – Схемы и фото расположения измерительной катушки ИК2: а, б – между полюсами печи и выше полюсов; в – на левом полюсе; 1 – ИК2, 2 – ИК1, 3 – полюс магнитопровода.

При подъеме катушки ИК2 ЭДС U_{ик2} сначала практически не изменялась (h до 40 мм), а затем убывала до 30 В. При расположении катушки ИК2 на полюсе U_{ик2}≈26 В. Измерения повторили, убирая пластины сверху вниз. Для соблюдения идентичности и достоверности измеряли горизонтальную В_{ег} составляющую вектора индукции милитесламетром Ш1-15У, располагая плоский датчик Холла посредине межполюсного расстояния на разной высоте. Часть результатов измерений при напряжении 400 В помещены в таблице 1 и на графиках рисунков 2 и 3.

Таблица 1 – Зависимость ЭДС U_{ик2} и индукции B_{er} от высоты h

№ п/п	Высота h рас- положения ИК2 над уров- нем 0, мм		U _{ик2} , В	B _{er} , Тл		
	низ	центр		ИК2	пере- счет	Ш1-15У
1	0	45	65/66	0,194	0,112	0,115
2	8	53	66/66	0,196	0,113	-
3	20	65	66/66	0,196	0,113	0,115
4	28	73	65/66	0,194	0,112	-
5	40	85	65/65	0,193	0,111	0,114
6	48	93	63/63	0,187	0,108	-
7	60	105	60/61	0,180	0,104	0,114
8	68	113	57/58	0,171	0,099	-
9	80	123	54/54	0,160	0,092	0,112
10	88	133	49/50	0,147	0,085	-
11	100	145	45/44	0,132	0,076	0,112-
12	108	153	40/40	0,119	0,069	-
13	120	165	35/35	0,104	0,060	0,104
14	128	173	30/30	0,089	0,052	-
15	140	185	25	-	-	0.0876
16	160	205	19	-	-	0,068
80						

Рисунок 2 – Зависимость ЭДС ИК2 от высоты h подъема центра ИК2 в рабочем объеме

Уравнение аппроксимации графика U_{uk2} = - 0,002h² + 0,1476h + 66 с достоверностью R^2 = 0,9906.

Ползуновский альманах № 4 2016

ОПРЕДЕЛЕНИЕ ИНДУКЦИИ В ЭЛЕКТРОМАГНИТНОЙ ПЕЧИ ЭМU-5,7-60М МЕТОДОМ АМПЕРМЕТРА-ВОЛЬТМЕТРА

Они показывают постепенное уменьшение индуцированной катушкой ИК2 ЭДС при подъеме низа ИК2 на 128 мм, а ее центра на 173 мм с 66 до 30 В (в 2,2 раза). Причем при нахождении катушки ИК2 полностью между полюсами печи это уменьшение незначительно (строки 1–5 таблицы), т. к. магнитное поле почти однородно. При дальнейшем ее подъеме поле становится неоднородным и появляется вертикальная В_{ев} составляющая индукции, приводящая к повороту вверх результирующего вектора В_{ер} и уменьшению горизонтальной В_{ег} составляющей.

Сначала посчитали горизонтальную составляющую вектора индукции В_{ег} в рабочем объеме печи по формуле [7].

 $B_{er} = \frac{U_{ик2}}{K_C \omega \cdot S_{ик} \cdot f} = \frac{U_{ик2}}{4 50 60 \cdot S_{ик}} = \frac{66}{12000 \cdot 0,028} = \frac{66}{336} = 0,194$ Тл и т. д. $B_{er} = \frac{30}{336} = 0.089$ Тл. Здесь K_c =4 – коэффициент, характеризующий форму синусоиды ЭДС.

Результаты расчета величины индукции В_{ег} поместили в таблицу 1.

Однако дополнительными измерениями милитесламетром Ш1-15У показано, что ее величина заметно завышена (таблица 1, рисунок 3). Для устранения этого завышения и создания идентичности измерений с милитесламетром Ш1-15У предложена измененная (адаптированная) путем введения эмпирического коэффициента 1,75 формула для расчета индукции В_{ег}

 $B_{er} = U_{\mu\kappa} / (1,75 \text{ w f } K_c S_{\mu\kappa}).$

Результаты пересчета величины индукции В_{ег} поместили в таблицу 1. Они показывают удовлетворительную сходимость с показаниями милитесламетра Ш1-15У в рабочем объеме печи и заметное расхождение за его пределами. Это объяснили неоднородностью поля с поворотом результирующего вектора В_{ер} и большой измерительной площадью катушки ИК2.

При расположении катушки ИК2 на горизонтальном торце левого полюса ее ЭДС составила U_{ик2}=25...26 В, а вычисленная по адаптированной формуле вертикальная составляющая вектора индукции неоднородного поля в воздухе над этим торцом B_{ев}=0,042 Тл. Измерения этой составляющей милитесламетром Ш1-15У непосредственно на торце этого полюса показали закономерно повышенное значение B_{ев}=0,06 Тл. При снижении же напряжения на силовой ЭК до 225 В милитесламетр Ш1-15У показал ожидаемое уменьшение B_{ев}=0,0375 Тл.

Особо отметим, что ЭДС U_{ик1}, характеризующая величину вертикальной В_{ів} состав-Ползуновский альманах № 4 2016 ляющей вектора индукции в магнитопроводе, равна 195 В (при 400 В на силовой ЭК), а рассчитанная по адаптированной формуле вертикальная составляющая В_{ів}=0,315 Тл. Для сравнения при снижении напряжения на силовой ЭК до 225 В ЭДС также снизилась до U_{ик1}=111 В, а рассчитанная – до В_{ів}=0,18 Тл.

Рисунок 3 – Зависимость горизонтальной составляющей вектора индукции В_{ег} от высоты h подъема плоского датчика Холла милитесламетра Ш1-15У при напряжении сети 225 и 400 В

Уравнения аппроксимации графиков рисунка 3:

 $B_{er} = -2E-05h^3 + 0,0023h^2 - 0,0663h+63 с до$ $стоверностью <math>R^2 = 0,9989$ при 225 В,

 $B_{er} = -3E-05h^3 + 0,0038h^2 - 0,1021h+115$ с достоверностью R² = 0,9974 при 400 В.

Для установления зависимости вертикальной В_{ів} составляющей вектора индукции в магнитопроводе от напряженности Н_{еэк} и индукции В_{еэк} магнитного поля в воздухе центра силовой ЭК высотой h_{эк}=0,08 м печь подсоединили к автотрансформатору PHO-250-10. Медленным поворотом ручки автотрансформатора добивались показаний индуцированной ЭДС U_{ик1} = 1, 2, 3 В и т. д. на одном из диапазонов ТЛ-4М. При этом фиксировали показания амперметра ЭЗ0 и мультиметра DT-838. При достижении напряжения 250 В печь переключили непосредственно к сети 400 В.

Напряженность Н_{еэк} и индукцию В_{еэк} вычислили как:

Н_{еэк}=I_{эк}w_{эк}/h_{эк}=0,5×60/0,08=375 А/м и т. д. В_{еэк}=µ₀H_{еэк}=1,256×10⁻⁶×375=0,000471 Тл и т. д.

Это позволило установить графическую зависимость B_{iв}=f(H_{еэк}) на рисунке 4, аппроксимированную уравнением: B_{iв} =3E-06H_{еэк} с достоверностью R² =0,9925.

Анализ полученных данных показывает.

1. Измерение ЭДС U_{ик2} методом амперметра-вольтметра с помощью измерительной катушки ИК2 позволяет адекватно оценить величину горизонтальной составляющей вектора индукции B_{er} между полюсами магнитопровода путем расчета по предложенной (адаптированной) формуле.

2. Измерение ЭДС U_{ик1} методом амперметра-вольтметра с помощью измерительной катушки ИК1 позволяет адекватно оценить величину вертикальной составляющей вектора индукции В_{ів} в магнитопроводе путем расчета по той же адаптированной формуле.

увеличении электрического 3. При напряжения питания U_{эк} до 400 В ток I_{эк} в силовой ЭК возрастает до 150 А, повышая ее магнитодвижущую силу І_{эк}w и напряженность Неэк и индукцию Веэк магнитного поля, создаваемого ЭК в воздухе, до 9000 А, 111000 А/м и 0,14 Тл, соответственно. Это приводит к практически прямо пропорциональному увеличению индуцированной измерительной катушкой ИК1 ЭДС Uик1 до 186 В и, соответственно, индукции Вів магнитопроводе левого полюса до 0,303 Тл (график В_{ів}=f(H_{еэк}) на рисунке 4). В теории магнитных цепей и измерений этот график представляет кривую намагничивания тела U-образной формы [7].

Рисунок 4 – Зависимость вертикальной составляющей вектора индукции В_{ів} в магнитопроводе от напряженности Н_{еэк} поля в силовой катушке

4. Величина индукции B_{iB} =0,303 Тл значительно меньше индукции насыщения трансформаторной стали (B_{ir} =2,1 – 2,2 Тл). Это свидетельствует о том, что при дальнейшем увеличении электрического напряжения $U_{3\kappa}$ можно ~ в 7 раз повысить ток $I_{3\kappa}$ (до ~1036 А) и, следовательно, напряженность $H_{e3\kappa}$ (до ~777000 А/м) и индукцию $B_{e3\kappa}$ (до ~0,96 Тл). В результате эквивалентно возрастет эффективность нагрева шихты и расплава.

5. Метод амперметра-вольтметра можно рекомендовать для оценки величины индукции В_{ів} и В_{ег} как более точного рабочего параметра любых индукционных печей (особенно при плавке ферромагнитной шихты) вместо (или наряду) применяемого в настоящее время параметра: мощности, потребляемой печью.

6. Из-за высокой нагревостойкости материала провода измерительной катушки при температурах до 1200 – 1400 °С и выше она может быть расположена в непосредственной близости к рабочему объему и тиглю печи. В электромагнитных печах катушка может охватывать полюсную часть магнитопровода или (будучи выполненной плоской) располагаться на вертикальной поверхности полюса снаружи тигля, в индукторных же печах может охватывать тигель.

В работе участвовали студенты Е. С. Баяндин, А. С. Зиновьев

Список литературы

1. Пат. 2539490 РФ, МПК F27B14/06. Электромагнитная индукционная тигельная плавильная печь с U-образным магнитопроводом и горизонтальным магнитным потоком / Левшин Г. Е., Попов Н. А. Патентообладатель АлтГТУ. – заявл. 12.03.2013; опубл. 20.01.2015.

2. Пат. 2536311 РФ, МПК F27B14/06. Электромагнитная тигельная плавильная печь с С- образным магнитопроводом и горизонтальным магнитным потоком / Левшин Г. Е., Сергеев С. Ю. Патентообладатель АлтГТУ. – заявл. 12.03.2013; опубл. 20.12.2014.

3. Пат. 2539237 РФ, МПК F27B14/06. Электромагнитная тигельная плавильная печь с горизонтальным магнитопроводом и магнитным потоком/ Левшин Г. Е., Вагайцев О. П. Патентообладатель АлтГТУ. – за-явл. 12.03.2013; опубл. 20.12.2014.

4. Левшин Г. Е. Исследование электромагнитной индукционной печи с U-образным магнитопроводом /Актуальные проблемы в машиностроении. 2015. № 2. С. 263 – 269.

5. Левшин Г. Е. Сравнение индукционных печей с вертикальным и горизонтальным электромагнитным потоком /Металлургия машиностроения». 2015. № 5. С. 2 – 6.

6. Левшин Г. Е. Наукоемкие технологии индукционной плавки в индукторных и электромагнитных тигельных печах /Наукоемкие технологии в машиностроении». 2016. № 3. С. 12-21.

7. Кифер И. И. Испытания ферромагнитных материалов. – М.: Энергия, 1969. – 360 с.

Левшин Геннадий Егорович – д. т. н., профессор

ФГБОУ ВО «Алтайский государственный технический университет им. И.И. Ползунова» (АлтГТУ), г. Барнаул, Россия

Ползуновский альманах № 4 2016