МЕТОД ИЗМЕРЕНИЯ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ ЖИДКОСТЕЙ С ИСПОЛЬЗОВАНИЕМ ПЕРЕХОДНОГО ПРОЦЕССА

В.А. Сопин, В.С. Тюркин, В.Б. Юшкова

Алтайский государственный технический университет им. И.И. Ползунова г. Барнаул

Статья посвящена разработке метода измерения удельной электропроводности жидкости с использованием переходного процесса. Исследование переходного процесса позволило определить параметры первичного преобразователя, чтобы в дальнейшем можно было исключить их из результата измерения.

Ключевые слова: кондуктометрия, переходный процесс, первичный преобразователь (ПИП), импеданс электродов, переходная проводимость, длительность импульса.

Кондуктометрия один из простых, надежных и дешевых методов измерения удельной электропроводности УЭП жидкости. Удельная электропроводность жидкости определяет ее состав, степень загрязненности (чистоты). Кондуктометрия широко применяется в науке и промышленности. Именно поэтому кондуктометрические методы анализа необходимо модернизировать, уменьшая погрешность измерения. В работе (3) рассматривается возможность устранения систематической погрешности в методе контроля удельной электропроводности растворов с использованием параметров переходного процесса.

Метод заключается в определении параметров первичного преобразователя с анализируемой жидкостью с использованием переходной функции по току.

Переходная функция по току (переходная проводимость) g(t) схемы замещения (рисунок 1) равна:

$$g_{cpi}(t_{cpi}) = a + b \exp(-ct_{cpi}). \tag{1}$$

Источником же систематической погрешности, в этом методе является несовпадение мгновенного значения переходной проводимости в момент времени $t_{\rm cpi}$ со средним значением переходной проводимости $g_{\rm cpi}$ в этот интервал времени [5].

Чтобы устранить систематическую погрешность, необходимо за выходной сигнал измерительной цепи принять время, необходимое для достижения заданного каналом сравнения значения тока через ПИП с анализируемой жидкостью.

На рисунке 1 представлена схема замещения первичного преобразователя.

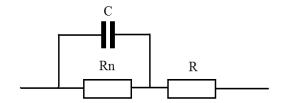


Рисунок 1 — Схема замещения контактного первичного преобразователя: R_n — суммарное поляризационное сопротивление электродов; С — суммарная емкость электродов; R — активное сопротивление анализируемой жидкости

Параметры первичного преобразователя связаны с коэффициентами аппроксимирующей функции следующими соотношениями [5]:

$$R = \frac{1}{a+b}, \quad R_n = \frac{b}{a(a+b)}, \quad C = \frac{(a+b)^2}{bc}.$$
 (2)

Переходный процесс на положительном и отрицательном импульсах показан на рисунке 2.

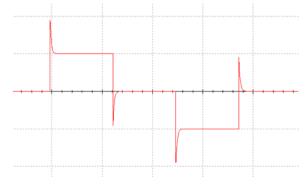


Рисунок 2 – Осциллограмма выходного сигнала

Длительность переходного процесса, а точнее, — постоянная времени (τ) задается величиной поляризационной емкости. Переходный процесс длится 3τ . Постоянная времени находится по формуле $\tau=\frac{1}{p}$ и зависит от корня характеристического уравнения, составленного для послекоммутационной схемы [3]. В нашем случае р равно:

$$p = -\frac{R + R_n}{RR_n c}.$$
 (3)

Для корректного определения параметров первичного преобразователя необходимо, чтобы длительность импульса была такой, чтобы к началу следующего импульса противоположной полярности выполнялись нулевые начальные условия.

Поэтому, одной из задач исследования переходного процесса было определение длительности импульса, необходимой для достижения 3τ . В таблице 1 приведены значения длительности импульса при значениях поляризационной емкости от 1 до 10 мкФ.

Таблица 1 – Значения длительности импульса

Ёмкость С, мкФ	Время Т2-Т1, мкс	
1	34.307	
2	80.428	
3	127.545	
4	173.151	
5	216.090	
6	260.389	
7	304.534	
8	349.772	
9	393.733	
10	436.733	

Исходя из длительности импульса, была определена минимально необходимая частота. Частота сигнала, проходящего через первичный измерительный преобразователь, должна быть меньше или равна частоте, значение которой приведено в таблице 2.

Таблица 2 - Неообходимая частота сигнала

Ёмкость С, мкФ	Требуемая частота f, Гц	Ёмкость С, мкФ
1	7287.14257	1
2	3108.37022	2
3	1960.09252	3
4	1443.82649	4
5	1156.92536	5
6	960.102001	6
7	820.926399	7
8	714.751324	8
9	634.948049	9
10	572.432127	10

На рисунке 3 изображена упрощенная структурная схема прибора на основе преобразователя ток – напряжение [5].

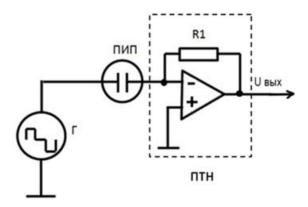


Рисунок 3 – Упрощенная структурная схема прибора: Г – генератор; ПИП – первичный преобразователь; ПТН – преобразователь ток-напряжение; R1 – сопротивление обратной связи; U _{вых} – выходное напряжение

Коэффициент усиления в данной схеме равен:

$$K_1 = rac{U_{\it BbIX}}{I_{\it ex}} pprox -R_{\it oc}$$
 (4)
Моделирование измерительной цепи,

Моделирование измерительной цепи, приведенной на рисунке 3 в программе Multisim помогает понять процессы, происходящие в измерительной цепи.

МЕТОД ИЗМЕРЕНИЯ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ ЖИДКОСТЕЙ С ИСПОЛЬЗОВАНИЕМ ПЕРЕХОДНОГО ПРОЦЕССА

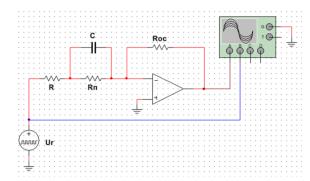


Рисунок 4 — Модель измерительной цепи, созданная в программе Multisim

Параметры схемы:

C=0,00001 Ф,

R = 10 OM,

Rn = 10 OM

Ur = 100 MB,

 $Roc = 1 \kappa Om.$

Для того, чтобы найти параметры первичного преобразователя необходимо решить систему уравнений:

$$\begin{cases}
U(gt_1) * R = U_1 \\
U(gt_2) * R = U_2 \\
U(gt_3) * R = U_3
\end{cases}$$
(5)

Вместо активного сопротивления используется комплексное сопротивление первичного преобразователя [3]:

$$Z(p) = \frac{R(R_n C_p + 2)}{R_n C_p + 1} \tag{6}$$

Проводимость находится по формуле:

$$\gamma = \frac{U_{\text{gen}} \cdot R_{os}}{U_{\text{gen}} \cdot R_{os}} \tag{7}$$

За выходной сигнал измерительной цепи принимается время, необходимое для достижения заданного каналом сравнения значения тока через ПИП с анализируемой жидкостью. При реализации этого метода необходимо:

- задать несколько значений тока через ПИП;
- измерить время достижения заданных значений тока;
- аппроксимировать проводимости, которые задают ток сравнения и время достижения этих значений током через ПИП зависимостью вида (1);
- определить параметры ПИП с анализируемой жидкостью используя соотношения
 (2).

В таблице 3 приведены данные, полученные при анализе переходного процесса, полученного в процессе реализации в программе Multisim.

Таблица 3 – Данные анализа переходного процесса

τ	U вых	Y	Время, с
0	9,535	0,09535	0
0,1τ	9,252	0,09252	5,45455E-06
0,2τ	8,769	0,08769	1,09091E-05
0,3τ	8,415	0,08415	1,63636E-05
0,4τ	8,037	0,08037	2,18182E-05
0,5τ	7,717	0,07717	2,72727E-05
0,6τ	7,454	0,07454	3,27273E-05
0,7τ	7,237	0,07237	3,81818E-05
0,8τ	6,981	0,06981	4,36364E-05
0,9τ	6,763	0,06763	4,90909E-05
1τ	6,523	0,06523	5,45455E-05

Напряжение питания, сопротивление обратной связи и входное напряжение заданы в модели, приведенной на рисунке 4. Проводимость находится по формуле (7).

Для расчета параметров первичного преобразователя была написана программа в математическом пакете MathCad.

В результате расчетов были получены значения R = 10,421, Rn = 10,153, $C = 1,105 \cdot 10^{-5}$.

Параметры первичного преобразователя с анализируемой жидкостью, найденные в процессе расчета достаточно точно согласуются со значениями, приведенными в модели, из чего можно сделать вывод о правильности расчета. Погрешность определения параметров первичного преобразователя в данном случае обусловлена неточностью определения времени достижения заданных значений тока через ПИП.

В результате проделанной работы был разработан метод измерения удельной электропроводности жидкости с использованием переходного процесса. Метод был разработан с помощью программного пакета Multisim. В дальнейшем планируется практическая реализация разработанного метода с использованием реальной кондуктометрической ячейки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Первухин Б.С., Юшкова В.Б. Использование переходных процессов для определения контактных первичных преобразователей, Ползуновский альманах. Барнаул: Изд-во АлтГТУ, 2014. №1. С. 48-50
- 2. Первухин Б.С. Определение параметров первичных преобразователей контактных кондуктометров на переменном напряжении прямоугольной формы./Первухин Б.С., Суворова Н.В., Юшкова В.Б.//Ползуновский альманах.-2013, №1,- С.65-66.
- 3. Первухин Б.С. Модернизация метода измерения удельной электропроводности жидкостей, воды и химических растворов/Юшкова В.Б., Первухин Б.С. //Ползуновский вестник 2015 №4. Т.1.-С.95-98
- 4. Первухин Б.С. Определение параметров контактных первичных преобразователей кондуктометров//Измерительная техника-2008-№3-С.61-63 5. Первухин Б.С. Развитие научно-методических основ проектирования кондуктометрических приборов контроля жидкостей и разработка технических средств их метрологического обеспечения. Диссертация на соискание ученой степени доктора технических наук. Барнаул 2012.

Юшкова Вера Борисовна – старший преподаватель кафедры ИТ, тел.: (3852) 290-913, e-mail: zeff007@mail.ru;

Сопин Виктор Анатольевич, магистрант, Тюркин Вячеслав – магистрант.