УДК 621.791.92:669.018.25

ПЛАЗМЕННО-ПОРОШКОВАЯ НАПЛАВКА ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ NI-CR-B-SI-FE/WC, МОДИФИЦИРОВАННЫХ НАНОРАЗМЕРНЫМ AL₂O₃

М.В. Радченко¹, Т.Б. Радченко¹, А.Н. Смирнов², К.В. Князьков³

¹Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул ²Кузбасский государственный технический университет имени Т.Ф. Горбачева, г. Кемерово ³Институт угля СО РАН, г. Кемерово

Приведён результат исследований и анализа изменения структурно-фазового состояния, механических и эксплуатационных свойств покрытий, полученных способом плазменно-порошковой наплавки сплавов системы Ni-Cr-B-Si-Fe/WC, модифицированных наноразмерными частицами Al₂O₃.

Ключевые слова: плазменно-порошковая наплавка, модифицирование, наноразмерный, структурно-фазовый состав, механические свойства.

PLASMA-POWDER SURFACING WEAR-RESISTANT COATING OF NI-CR-B-SI-FE/WC, MODIFIED BY NANO-SIZED AL₂O₃

M.V. Radchenko¹, T.B. Radchenko¹, A. N. Smirnov², K.V. Kniazkov³

¹The Altai state technical university of I.I. Polzunov, Barnaul

²Kuzbass state technical University named after T. F. Gorbachev, Kemerovo

³Institute of coal SB RAS, Kemerovo

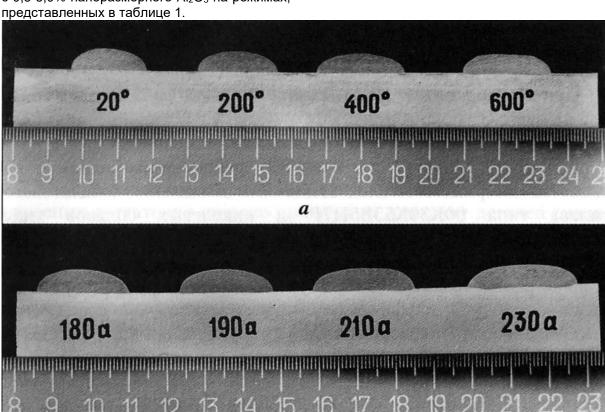
The results of the research and analysis of structural and phase changes, mechanical and operational performance properties of the coatings, obtained by plasma-powder cladding of Ni-Cr-B-Si-Fe/WC alloys, modified nanoparticles Al_2O_3 are presented.

Keywords: plasma-powder cladding, modification, nano-sized, structurally-phase composition, mechanical properties.

Как известно, проблема интенсивного изнашивания деталей машин горнодобывающего оборудования, таких как ковши экскаваторов, бронеплиты защиты кузовов карьерных самосвалов и др. при эксплуатации в условиях ударно-абразивных нагрузок является чрезвычайно актуальной, так как под воздействием износа происходит разрушение рабочих поверхностей, что требует применения технологических мер по повышению их износостойкости.

В настоящее время защита рабочих поверхностей деталей машин горнодобывающего оборудования осуществляется преимущественно при помощи монтажа бронеплит, изготовленных из листов углеродистых сталей с защитными покрытиями, нанесенными различными способами наплавки. Толщина бронеплит находится в пределах от 20 до 30 мм при толщине основного металла от 10 до 20 мм, что существенно снижает производительность горнодобывающего оборудования.

Современные технологии нанесения защитных покрытий имеют недостаток в том, что


они направлены на повышение абразивной износостойкости поверхностей деталей машин, но не позволяют их эксплуатацию в условиях комбинированного ударно-абразивного изнашивания в связи с низкой стойкостью к ударным нагрузкам и преждевременному разрушению.

В данной статье представлены исследования влияния модификатора на формирование износостойких покрытий, выполненных плазменно-порошковой наплавкой (ППН) композиционного порошка ПС-12НВК-01. В качестве модификатора применяли наноразмерный Al_2O_3 . Для предотвращения агломерации наноразмерных частиц модификатора и композиционного наплавочного материала, смешивание выполняли в механоактивирующей мельнице АГО-3.

Для разработки технологии плазменнопорошковой наплавки были наплавлены контрольные образцы (рисунок 1). Наплавка производилось порошковым сплавом ПС-12НВК-01 и композиционными смесями ПС-12НВК-01

OTO3BAHA/ RETRACTED 05.04.2022

ПЛАЗМЕННО-ПОРОШКОВАЯ НАПЛАВКА ИЗНОСОСТОЙКИХ ПОКРЫТИЙ CИСТЕМЫ NI-CR-B-SI-FE/WC, МОДИФИЦИРОВАННЫХ НАНОРАЗМЕРНЫМ AL₂O₃

с 0.5-3.0% наноразмерного Al_2O_3 на режимах.

Рисунок 1 - Макрошлифы наплавленных валиков при различных токах дуги

Таблица 1 - Режимы ППН композиционным материалом системы Ni-Cr-B-Si-Fe/WC и композиционной смесью ПС-12HBK-01+ Al₂O₃

№ режима	I, A	q _{пл} , л/мин	q _{тр} , л/мин	q₃, л/мин	<i>V_н,</i> м/ч	G _{пр} , кг/ч
1	80-85	1,0	3,0	15,0	6,0	3,0
2	100-105	1,0	3,5	15,0	8,0	3,5
3	120-125	1,5	4,0	15,0	9,0	4,0
4	140-145	1,5	5,0	15,0	10,0	5,0
5	155-160	1,5	5,0	15,0	12,0	6,0
6	170-175	2,0	6,0	15,0	18,0	7,0

Исследования качества наплавок выполнялись методами световой оптической микроскопии, рентгеноструктурного анализа, растровой электронной микроскопии, испытаниями на абразивное изнашивание и ударный изгиб.

При комплексном исследовании свойств модифицированных покрытий получены следующие результаты: 1) снижение доли дендритной структуры в области зоны сплавления вплоть до полного её исчезновения при количестве модификатора порядка 0,5-1,0%;

2) исключение трещинообразования; 3) повышение балла зерна упрочняющей фазы во всех зонах модифицированных покрытий.

Дальнейшие исследования, в частности фазовый анализ позволил выявить присутствие 5-и основных фаз: Fe-Ni, Ni-Cr-Fe, WC, W₂C и Fe₃Ni₃B (таблица 2). При этом основной фазой для всех видов образцов является пластичная матричная фаза (Fe-Ni), дополнительными упрочняющими фазами являются карбиды вольфрама и борид никеля и железа [2].

Таблица 2 - Тип фаз и их объемная доля в исследуемых защитных покрытиях

Образец	Фаза	Объемная доля фазы	
	Fe-Ni	60%	
Исходный	Ni-Cr-Fe	5%	
	WC	35%	
	Fe-Ni	65%	
Модифицированный образец (0,5% масс. Al ₂ O ₃)	W ₂ C	5%	
,	WC	30%	
	Fe-Ni	65%	
Модифицированный образец (1,0% масс. Al ₂ O ₃)	W ₂ C	35%	
,	Fe ₃ Ni ₃ B	1-2%	
Модифицированный образец	Fe-Ni	65%	
(3,0% macc. Al ₂ O ₃)	W ₂ C	35%	

Для исследования износостойкости многофазных систем износостойких наплавочных сплавов, имеющих композиционную структуру, применяли методику абразивного изнашивания поверхностей образцов о жёстко закрепленные частицы абразива [3].

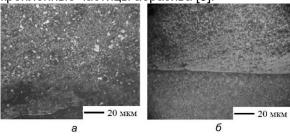


Рисунок 2 - Микроструктура наплавленных покрытий:а) немодифицированных, б) модифицированных

Результаты испытаний образцов позволяют установить, что увеличение количества модифицирующего компонента в смеси, который, в свою очередь, вызывает изменение структурно-фазового состава, приводит к снижению объема износа. При этом наблюдается существенный подъем износостойкости в образце с содержанием 1,0% масс. Данный образец обладает высоким, по сравнению с немодифицированным образцом, содержанием упрочняющей фазы в виде W₂C и большей

микротвердостью основы, что объясняет повышение сопротивляемости к абразивному изнашиванию.

Дальнейшие исследования были посвящены изучению влияния добавок наноразмерного модификатора Al₂O₃ на механические свойства наплавленных покрытий. На основании экспериментальных данных по микротвёрдости, сравнительной износостойкости разработанных покрытий и покрытий из известных материалов, ударной вязкости наплавленных покрытий при различном содержании наноразмерного модификатора были построены зависимости абразивной стойкости (относительной потери массы) от количественного содержания модификатора в смеси с композиционным материалом. Методика определения износостойкости предусматривает испытания образцов с различным содержанием модификатора и их износ относительно образца эталона, полученного при той же технологии наплавки (рисунок 3).

Согласно результатам испытаний, приведённым на графике, наиболее высокую износостойкость имеют покрытия, наплавленные при содержании модификатора в композиционной смеси 0,5; 1,0; 1,5% масс. При этом максимальная износостойкость наблюдается в образце, выполненным с 1,0% масс. модификатора в композиционной смеси [4].

OTO3BAHA/ RETRACTED 05.04.2022

ПЛАЗМЕННО-ПОРОШКОВАЯ НАПЛАВКА ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ NI-CR-B-SI-FE/WC, МОДИФИЦИРОВАННЫХ НАНОРАЗМЕРНЫМ AL₂O₃

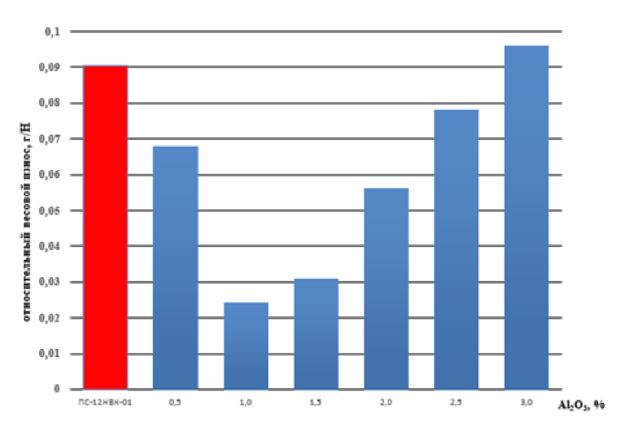


Рисунок 3 - Относительный весовой износ наплавленных покрытий с учетом различного содержания модифицирующего компонента в композиционном материале ПС-12HBK-01

Таким образом, исследования микроструктуры и механических свойств защитных покрытий подтверждают, что рациональным содержанием для повышения стойкости композиционных покрытий системы Ni-Cr-B-Si-Fe/WC является 1,0% масс. в композиционном материале ПС-12HBK-01.

Дальнейшие испытания на абразивную стойкость были выполнены с учетом таких наиболее распространенных упрочняющих материалов, как электроды для ручной дуговой наплавки Т-620 и порошковые прутки Релита на железной основе с содержанием 85% карбида вольфрама.

Результаты испытаний, представленные на рисунке 4, указывают на то что износостой-кость покрытий, наплавленных Релитом несколько больше чем у разработанных модифицированных покрытий ПС-12НВК-01+1,0%Al₂O₃. Однако известно, что защитные покрытия, наплавленные релитом, имеют высокую стоимость, превышающую примерно на 20-30% стоимость даже композиционных сплавов. А также такие покрытия не имеют возможности сопротивляться ударному износу, из-за отсутствия пластичности наплавленных покрытий.

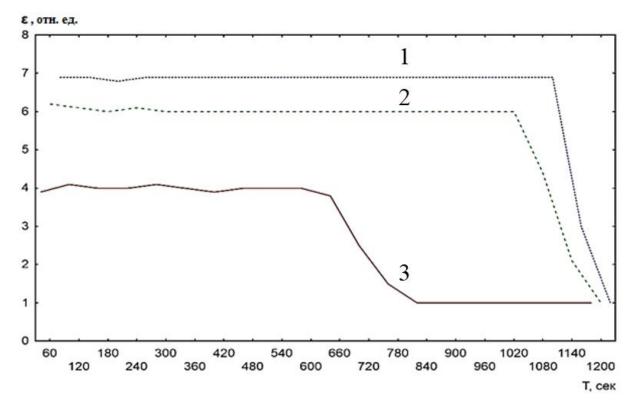


Рисунок 4 - Относительная износостойкость ε упрочняющих покрытий, выполненных: 1 – Релит (WC85%); 2 – ПС-12HBK-01+1,0%Al₂O₃; 3 – T-620, при эталоне сталь 40 (в отожженном состояние).

Испытания на ударную вязкость проводились для всех образцов наплавок защитных покрытий, а именно: с исходным композиционным материалом ПС-12НВК-01 и с композиционными смесями, содержащими 0,5-3,0% масс. наноразмерного модификатора. Анализ результатов испытаний подтверждают повышение стойкости защитных покрытий с содержанием модификатора 0,5- 2,0% масс. к ударным нагрузкам за счет всего совокупного влияния модификатора на структуру наплавленных покрытий (рисунок 5).

На рисунке 6 представлен характерный излом покрытий, наплавленных без модификатора и с использованием наноразмерного модификатора. В первом случае отчётливо виден хрупкий излом металла, на сколе которого находится крупный карбид, вероятно послуживший инициатором разрушения вследствие больших размеров и внутренних структурных напряжений.

Излом образца, наплавленного с модификатором, имеет типичный мелкоямочный излом, характерный для структур с высокими показателями сопротивления ударному разрушению [5].

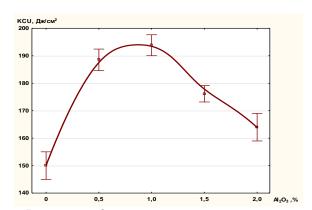
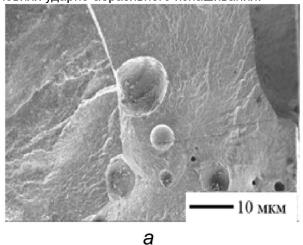



Рисунок 5 - Зависимость ударной вязкости наплавленных покрытий от содержания наноразмерного модификатора

Необходимо особенно отметить, что и в данном испытании содержание модификатора порядка 1% обусловило наибольшую ударную вязкость покрытий. Следовательно, сочетание лучших показателей твёрдости, износостойкости и ударной вязкости позволяет предположить, что покрытия, наплавленные на рациональном режиме с введением 1% наноразмерного Al₂O₃, должны обеспечить лучшие по-

ПЛАЗМЕННО-ПОРОШКОВАЯ НАПЛАВКА ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ NI-CR-B-SI-FE/WC, МОДИФИЦИРОВАННЫХ НАНОРАЗМЕРНЫМ AL₂O₃

казатели при эксплуатации горнодобывающего оборудования с защитными покрытиями в условиях ударно-абразивного изнашивания.

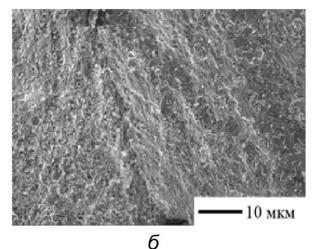


Рисунок 6 - Изображение характерных изломов образцов наплавленных покрытий: а – без модификатора; б – с модификатором Al₂O₃

Таким образом, комплексные исследования структуры немодифицированных и модифицированных покрытий методами световой, электронной растровой, электронной просвечивающей микроскопии, определения балла зерна, рентгеноструктурного анализа, определения внутренних напряжений и скалярной плотности дислокаций в покрытиях показали практически однозначно положительное влияние введения наноразмерного Al₂O₃ модификатора на структурные изменения в защитных покрытиях.

При наплавке композиционными материалами, содержащими модификатор, обеспечивается формирование карбидонасыщенной структуры, имеющей примерно в два раза более высокие показатели микротвердости.

Необходимо особенно отметить, что при испытаниях на ударную вязкость и абразивную стойкость содержание модификатора порядка 1% также обусловило наибольшие показатели стойкости.

В результате, исследования микроструктуры и механических свойств защитных покрытий подтверждают, что рациональным содержанием для повышения стойкости композиционных покрытий системы Ni-Cr-B-Si-Fe/WC является 1,0% масс. в композиционном материале ПС-12НВК-01, что необходимо для обеспечения лучших показателей при эксплуатации горнодобывающего оборудования с защитными покрытиями в условиях абразивного изнашивания.

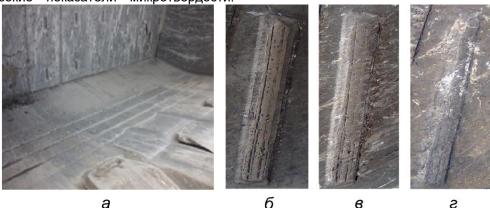


Рисунок 7 - Износ бронеплит ковша экскаватора: а - ковш экскаватора, б, в, г, д - изображения установленной бронеплиты, выполненной по разработанной технологии перед началом и после испытаний (через 6, 18, 24 месяца)

Разработанная технология модифицирования наноразмерным Al₂O₃ в процессе плазменно-порошковой наплавки была апробирована на ОАО «Черниговец». Применение разработанной технологии при изготовлении бронеплит для ковшей экскаватора Hitachi EX5500 емкостью 27 м³ (рисунок 7), подвергающихся ударным нагрузкам вследствие падения угольной породы общей массой до 40 тонн, показало, что разработанное покрытие имеет в 8 раз более высокую износостойкость по сравнению с покрытием, выполненным электродами Т-590, и в 1,2 раза - по сравнению с покрытием из релита. При этом расчёт показал, что при футеровке боковых стенок ковша с толщиной покрытий до 3мм экономическая эффективность составит 2,6 млн. руб. в год при общей стоимости ковша 48 млн. руб.

Выводы

- 1. В результате экспериментальных технологических исследований определено рациональное содержание наноразмерного модификатора Al_2O_3 в композиционной смеси с ПС-12HBK-01 порядка 1%, что позволяет увеличивать абразивную стойкость защитных покрытий в 2,2 раза по сравнению с покрытиями, полученными исходной наплавочной смесью, а также повысить в 1,4 раза стойкость к ударным нагрузкам, что отвечает условиям длительной эксплуатации горнодобывающего оборудования.
- 2. Проведена производственная апробация разработанной технологии плазменно-порошковой наплавки на угольном разрезе ОАО

"Черниговец" (Кузбасс) с экономической эффективностью применения данной технологии (по оценке экономистов угольного разреза) 1,1 млн. руб. на один ковш.

Список литературы

- 1. Смирнов А. Н., Князьков В. Л., Радченко М.В., Козлов Э. В., Князьков К.В.. Повышение свойств плазменно-порошковых покрытий модифицированием наноразмерными частицами// Ползуновский вестник.-2012.- № 1/1.-С. 127-130, 3 с.
- 2. Ползуновский вестник, 2012.- № 1/1.-C. 127-130, 3 с.
- 3. Князьков К.В. Разработка технологии модифицирования износостойких покрытий системы Ni-Cr-B-Si-Fe/WC в процессе плазменно-порошковой наплавки: Автореф. дисс. канд. техн. наук. 05.02.10 М., 2015. 18 с.
- 4. Комбалов В.С. Методы и средства испытаний на трение и износ конструкционных и смазочных материалов: справочник / под ред. К.В. Фролова, Е.А. Марченко. М.: Машиностроение, 2008. 384 с.
- К. В. Князьков, [и др.] Исследование износостойкости упрочняющих покрытий системы Ni-Cr-B-Si-Fe/WC модифицированных Al₂O₃// Ползуновский альманах – 2012 – № 1 – С. 169-171.
- 6. Фридман, Я. В. Строение и анализ излома металлов / Я. В. Фридман, Т. А. Гордеева, А. М. Зайцев. М.: МАШГИЗ, 1960. С. 128.