ВИРТУАЛЬНЫЕ И ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ В СТУДЕНЧЕСКИХ РАБОТАХ

УДК 681.2.082

РАЗРАБОТКА МЕТОДА КОНТРОЛЯ КАЧЕСТВА ТРОТУАРНОЙ ПЛИТКИ ПО УРОВНЮ И ПЛОТНОСТИ ТЕХНОЛОГИЧЕСКОЙ ЖИДКОСТИ ПОПЛАВКОВЫМ ПЕРВИЧНЫМ ИЗМЕРИТЕЛЬНЫМ ПРЕОБРАЗОВАТЕЛЕМ

Т. В. Котлубовская, А. О. Аксенов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Статья посвящена разработке метода контроля качества бетонной тротуарной плитки.

Ключевые слова: тротуарная плитка, контроль качества, поплавковый метод, первичный измерительный преобразователь.

Темпы строительства по всей стране и в нашем регионе стабильно высоки. Бетон - самый распространенный в строительстве материал. Одними из основных характеристик бетона являются прочность и морозостойкость. На определение этих характеристик тратится немало денег и времени. При сокращении времени исследования, можно снизить количество некачественного бетона и внести коррективы в рецептуру изготовления с целью повышения качества материала.

Решить проблему уменьшения срока определения качества бетона возможно на примере бетонной тротуарной плитки.

В настоящее время применение бетонной тротуарной плитки, как альтернативы асфальту или другому какому-либо покрытию, уже ни у кого не вызывает вопросов.

Существует два метода производства тротуарной плитки: метод объемного полусухого вибропрессования, и метод вибролитья [1].

Независимо от метода производства необходимо осуществлять экспресс-контроль качества готовой продукции.

Бетонная тротуарная плитка, как любой бетон, имеет пористую структуру. В качественной тротуарной плитке пор - минимальное количество. Для определения морозостойкости тротуарной плитки ускоренным методом применяется технологический раствор соли (натрия хлорид). Уровень морозостойкости плитки зависит от поглощения ею жидкости. А уровень поглощения жидкости находится в прямой зависимости от количества пор в бетонной тротуарной плитке. В конечном итоге, качественная плитка поглощает очень малое

количество технологического раствора. И, следовательно, контролируя уровень и плотность поглощаемого бетоном раствора, можно судить о качестве исследуемой тротуарной плитки. Уровень и плотность можно определять поплавковым первичным измерительным преобразователем (ПИП).

Вышеизложенное послужило основанием для постановки цели работы – исследовать зависимость изменения уровня h и плотности р технологической жидкости от пористости бетона и разработать метод контроля качества тротуарной плитки.

В настоящее время на производстве существует множество разнообразных технических средств, которые могут самостоятельно решать задачи по измерению и контролю уровня жидкости и плотности используемых технологических растворов.

Существуют две основные группы по измерению уровня жидкости: контактные и бесконтактные. Среди контактных методов наиболее распространены поплавковый, буйковый, емкостный и манометрический методы. К бесконтактным относят ультраакустический, радиационный и радиочастотный методы [2]. Работа поплавковых плотномеров основана на законе Архимеда. Поплавковые плотномеры изготавливают с плавающим и с полностью погруженным поплавком.

В приборах первого типа мерой плотности служит глубина погружения поплавка определенной формы и постоянной массы. В плотномерах второго типа глубина погружения поплавка практически постоянна, а измеряют действующую на поплавок выталки-

РАЗРАБОТКА МЕТОДА КОНТРОЛЯ КАЧЕСТВА ТРОТУАРНОЙ ПЛИТКИ ПО УРОВНЮ И ПЛОТНОСТИ ТЕХНОЛОГИЧЕСКОЙ ЖИДКОСТИ ПОПЛАВКОВЫМ ПЕРВИЧНЫМ ИЗМЕРИТЕЛЬНЫМ ПРЕОБРАЗО-ВАТЕЛЕМ

вающую силу, пропорциональную плотности жидкости [5].

Поскольку для реализации поставленной цели необходим набор унифицированных блоков измерения уровня и плотности раствора, то следует разработать автоматизированную информационно- измерительную систему, которая будет представлять собой совокупность средств измерений и вспомогательных устройств, информационно - измерительных каналов, соединенных между собой каналами связи, предназначенными для автоматического получения измерительной информации от ряда источников, а также для ее передачи и обработки.

На рисунке 1 представлена функциональная схема, состоящая из блоков, отвечающих за процесс производства тротуарной плитки методом вибролитья и блоков, отвечающих за измерение и контроль параметров ρ и h.

Контроль качества готовой продукции будет производиться с помощью автоматизированной информационно - измерительной системы, предназначенной для измерения уровня жидкости (параметр X_1) и плотности технологических растворов (параметр X_2).

Для измерения уровня жидкости решено использовать датчик поплавкового уровнемера РУПТ- АМ, пределы допускаемой основной приведенной погрешности которого при преобразовании уровня (или уровня раздела) среды в стандартный токовый выходной сиг-

нал, не более ± 0,15%. Установка датчика на резервуаре осуществляется сверху имеющемся или специально образованном посадочном месте, максимальное отклонение оси датчика от вертикали ±1° для датчика с жестким чувствительным элементом (ЧЭ) и не более ±5° для датчика с гибким ЧЭ. В месте установки блоков необходимо наличие внешнего источника питания +24 B ±10 %. Выходы датчика подключаются ко входам преобразователя, преобразующего сигнал токовой петли (4-20) мА в напряжение в диапазоне от 1 В до 5 В и передают данные на микроконтроллер [3, 4].

Для измерения плотности технологического раствора будет применяться один из вышеописанных способов.

Для сбора и обработки данных канала ИИС в системе будет использован микроконтроллер ATmega8, 8-разрядный высокопроизводительный AVR микроконтроллер с малым потреблением, на основе которого существует возможность расширения ИИС с подключением ряда измерительных каналов (в данном случае будут использоваться два канала).

В качестве средства отображения информации решено использовать жидкокристаллический модуль МТ-12232A, состоящий из БИС контроллера управления и панели, и имеющий два режима отображения информации – прямой и обратный.

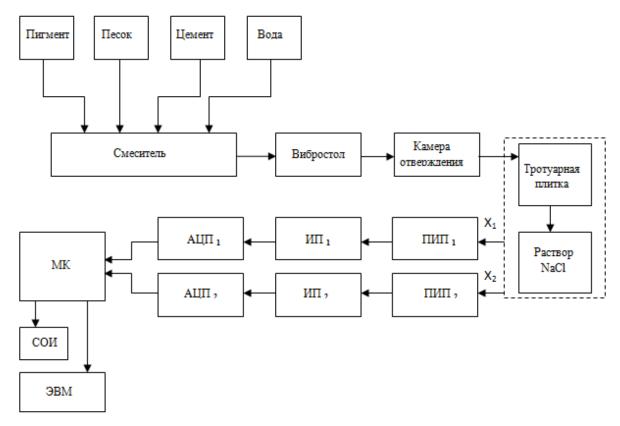


Рисунок 1 — Функциональная схема производства тротуарной плитки методом вибролитья и контроля качества готовой продукции

Условные обозначения:

X _{1.2} – контролируемые уровень и плотность жидкости;

 $\Pi \Pi_{1,2}$ – первичный измерительный преобразователь;

 $И\Pi_{1,2}$ – измерительный преобразователь тока в напряжение;

АЦП_{1,2} – аналого-цифровой преобразователь;

МК – микроконтроллер:

СОИ – средство отображения информации;

ЭВМ – электронно-вычислительная машина.

Выводы.

Разрабатываемый метод контроля качества бетонной тротуарной плитки по уровню и плотности технологической жидкости поплавковым ПИП позволит осуществлять экспрессконтроль качества готовой продукции.

СПИСОК ЛИТЕРАТУРЫ

- 1. Тротуарная плитка: производство, продажа, укладка [Электронный ресурс]: Режим доступа: http://kvantspb.com/proizvodstvo.html. Загл. с экрана.
- 2. КИПИА от А до Я [Электронный ресурс]: Технологии и методы измерения уровня Режим доступа:

http://knowkip.ucoz.ru/publ/teplotekhnicheskie_izmere nija/izmerenie_urovnja/tekhnologii_i_metody_izmereni ja_urovnja_sredy/4-1-0-55. – Загл. с экрана..

- 3. Большая энциклопедия нефти и газа [Электронный ресурс]: Информационноизмерительные системы - Режим доступа:
- 4. Поплавковые плотномеры Студопедия [Электронный ресурс]: Режим доступа: http://studopedia.ru/2_119795_poplavkovie-plotnomeri.html

Котлубовская Татьяна Викторовна – к. т. н., доцент, тел.: (3852) 290913, e-mail: tavikot2010@mail.ru;

Аксенов Александр Олегович - магистрант.