ОПРЕДЕЛЕНИЕ ЕДИНИЧНЫХ ОБЖАТИЙ МЕТАЛЛА В МОНОЛИТНОЙ ВОЛОКЕ

М. И. Поксеваткин, Е. М. Басова, С. В. Герман

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул, Россия

Получена аналитическая зависимость распределения единичных обжатий металла по длине очага деформации монолитной волоки.

Ключевые слова: аналитическая зависимость, распределение обжатий, очаг деформации; монолитная волока

IN MONOLITHIC DRAG DEFINITION OF SINGLE SINKINGS OF METAL

M. I. Poksevatkin, E. M. Basova, S. V. German Altai state technical university, Barnaul, Russia

An analytical dependence of the distribution of individual breakdowns of the metal along the length of the deformation zone monolithic dies.

Keywords: analytical dependence, distribution of breakdown, deformation zone, monolithic portage

В процессе волочения в монолитной волоке при прохождении металла через очаг деформации, заготовка в каждом своем сечении подвергается радиальным обжатиям, распределение которых по длине очага деформации характеризует режим волочения и непосредственно связано с профилем деформирующего конуса инструмента.

Применяемые, обычно, монолитные волоки с прямолинейной образующей деформирующего конуса (рисунок 1) создают крайне неблагоприятный режим распределения радиальных обжатий по длине очага деформации, что существенно снижает качество продукции и производительность процесса волочения, повышает износ инструмента.

Принцип определения частных единичных радиальных обжатий, сформулированных в работе [1], применительно к процессу пилигримовой прокатки может быть использован для расчета обжатий в монолитной волоке с прямолинейной образующей деформирующего конуса.

Согласно этому принципу для определения единичных обжатий в каком-либо сечении очага деформации необходимо взять другое сечение, удаленное от первого на расстоянии, при котором объем металла заготовки, заклю-

ченный между сечениями, равен объему металла, смещаемого за один оборот валков.

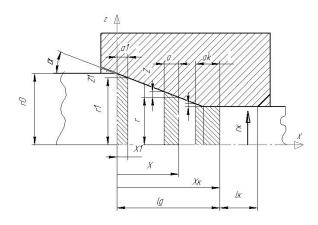


Рисунок 1

Применительно к процессу волочения шаг смещаемого в очаге деформации металла, заключенного между сечениями x и x- δ (рисунок 1), предпочтительно взять за единицу времени.

Тогда объем смещаемого металла в единицу времени находят по исходным данным:

$$V_0 = \pi \cdot r_0^2 \cdot V_{\rm B} \tag{1}$$

где V_0 – объем смещаемого в единицу времени металла, мм³/сек;

 r_0 – исходный радиус заготовки, мм;

 $V_{\rm g}$ – скорость волочения, мм/сек.

Абсолютное обжатие (z) в любом сечении х (рисунок 1) равно:

$$z = \delta \cdot \tan \alpha, \tag{2}$$

где δ – шаг смещаемого объема металла в единицу времени, мм;

 α – угол конусности деформирующего участка I_g , мм.

Относительные единичные обжатия (ϵ) в любом сечении х:

$$\varepsilon = Z/_{r},\tag{3}$$

где r - величина радиуса заготовки в сечении х, мм.

Примечание: в знаменателе отношения (3) с целью упрощения дальнейших расчетов вместо выражения $\langle (r+z) \rangle$ проставлено $\langle r \rangle$, что вполне допустимо.

В любом сечении х деформируемого участка I_a (рисунок 1) текущие значения радиуса (r) заготовки и относительного единичного обжатия (ε) равны:

$$r = r_0 - x \cdot \tan \alpha; \tag{4}$$

$$\varepsilon = z/(r_0 - x \cdot \tan \alpha). \tag{5}$$

Объем металла между сечениями *x* и *x-*δ (V_x) определяется как объем прямого усечен-

$$V_x = V_0 = \frac{\pi \cdot \delta}{3} [(r+z)^2 + (r+z) \cdot r + r^2].$$
 (6)

 $V_x = V_0 = \frac{\pi \cdot \delta}{3} [(r+z)^2 + (r+z) \cdot r + r^2].$ (6) С учетом формул (2) и (4) выражение (6)

примет вид:
$$V_0 = \frac{\pi \cdot z}{3 \tan \alpha} [(r_0 - x \cdot \tan \alpha + z)^2 + (r_0 - x \cdot \tan \alpha + z)(r_0 - x \cdot \tan \alpha)^2]. \tag{7}$$

Формула (7) с учетом выражения (1) преобразуется в уравнение для определения абсолютных единичных обжатий в любом сечении x участка I_{α} (рисунок 1):

$$z = \frac{r_0^2 \cdot V_{\text{B}} \cdot \tan \alpha}{[z^2/3 + (r_0 - x \cdot \tan \alpha + z)(r_0 - x \cdot \tan \alpha)]}$$
(8)

Решая кубическое уравнение (8) с использованием формулы Кардано, получены единичные абсолютные (z) и относительные (ε) обжатия по длине очага деформации в волоке с прямолинейной образующей деформирующего конуса для случая волочения круглого профиля диаметром 16 мм; угол конусности $\alpha = 8^\circ$; длина обжимаемого участка I_{o} =18 mm.

Полученные данные свидетельствуют о крайне неравномерном распределении единичных обжатий по длине очага деформации; они достигают пиковых значений на границе деформируемого (I_a) и калибруемого (I_k) участков заготовки (рисунок 1) и хорошо согласуется с полученными ранее результатами при планетарно-винтовой прокатке валками с прямолинейной образующей [2].

Рациональное распределение единичных радиальных обжатий может быть достигнуто построением соответствующего продольного профиля деформирующего конуса монолитной волоки на основе равенства единичных радиальных обжатий по длине очага деформации с учетом коэффициента упрочнения деформируемого металла.

Вывод:

- 1. Получена аналитическая зависимость для определения единичных радиальных обжатий в любом сечении очага деформации монолитной волоки с прямолинейной образующей деформирующего конуса.
- 2. Результаты расчетов показали крайне неравномерный характер распределения единичных обжатий по длине обжимаемого участка заготовки.

Список литературы

- 1. Целиков, А. И., Сталь. Вопросы трубного производства [Текст] / А.И. Целиков, А. Н. Ирошников. – М.: Металлургиздат, 1940 – 162 с.
- 2. Тетерин, П. К. Определение частных обжатий по длине зоны деформации при планетарно-винтовой прокатке [Текст] / П. К. Тетерин, Г. П. Тетерин, Д. М. Поксеваткин // Кузнечноштамповочное производство. - 1995. - № 7. c. 23-25.

Поксеваткин Михаил Иванович — к.т.н., профессор

Басова Елена Михайловна — аспирант.

e-mail: 9133604663@mail.ru

Герман Светлана Владимировна — аспирант, e-mail: lana86@list.ru

ФГБОУ ВПО «Алтайский государственный технический университет им. И. И. Ползунова» (АлтГТУ), г. Барнаул, Россия