ОПРЕДЕЛЕНИЕ СИЛОВЫХ УСЛОВИЙ ЗАЖИМА МАТРИЦ С ВЕРТИКАЛЬНЫМ РАЗЪЕМОМ

Е. М. Басова, С. В. Герман, М. И. Поксеваткин

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул, Россия

Проведена оптимизация усилия зажима матриц с вертикальным разъемом. Разработан трехмодульный оптимизационный алгоритм, который успешно реализован компьютерной программой.

Ключевые слова: оптимизация, усилие, зажим матриц

DEFINITION OF POWER CLAMPIIG DIES VERTICALLY SPLIT

E. M. Basova, S. V. German, M. I. Poksevatkin

Altai state technical university, Barnaul, Russia

The optimization of the clamping force matrices with vertical connector. Designed Tri-modal optimization algorithm, which has been successfully implemented by a computer program.

Keywords: optimization, intension, clip matrices

При штамповке разъемных матриц особое затруднение вызывают определение величины усилия зажима матриц и обеспечение стабильности этой величины в процессе штамповки большой партии поковок. Чрезмерное усилие зажима существенно повышает износ внешних боковых поверхностей матриц, недостаточный зажим ведет к появлению заусенца в разъеме матриц, что вызывает ускоренный износ поверхностей зажима и снижение качества поковок.

На рисунке 1 приведена схема сил, действующих при штамповке в разъемных матрицах.

Согласно схеме усилие штамповки равно:
$$P_{III} = P_{IB} + P_{IB} + T \cdot cos \alpha$$
 (1)

где $P_{\text{ш}}$ – усилие штамповки;

 $P_{\scriptscriptstyle B}$ _ вертикальная составляющая реактивной силы ($P_{\scriptscriptstyle H}$), действующей перпендикулярно скосу обоймы 1;

$$P_{\rm B} = P_{\rm 3K} \cdot \tan \alpha \tag{2}$$

здесь Р_{зж} – сила зажима матриц;

α – угол скоса обоймы 1.

Усилие зажима матриц 2 при штамповке в матрицах с вертикальным разъемом достигает 75–100 % от усилия штамповки P_{uu} [1]:

$$P_{3K} = 0.75 \cdot P_{III}, \tag{3}$$

где P_{3} – усилие противодавления упругого элемента;

$$\begin{split} T - \text{сила трения.} \\ T = \mu \cdot \sigma_y \cdot F_6 \end{split} \tag{4}$$

где μ - показатель трения в контакте боковой поверхности матриц F_{6} и поверхности скоса обоймы;

 σ_y – предел упругости материала матриц, МПа.

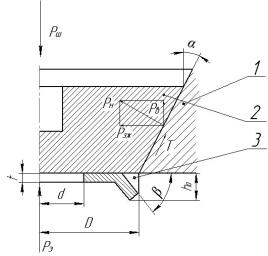


Рисунок 1 – Схема сил при штамповке в разъемных матрицах: 1 – обойма, 2 – матрица, 3 – упругий элемент

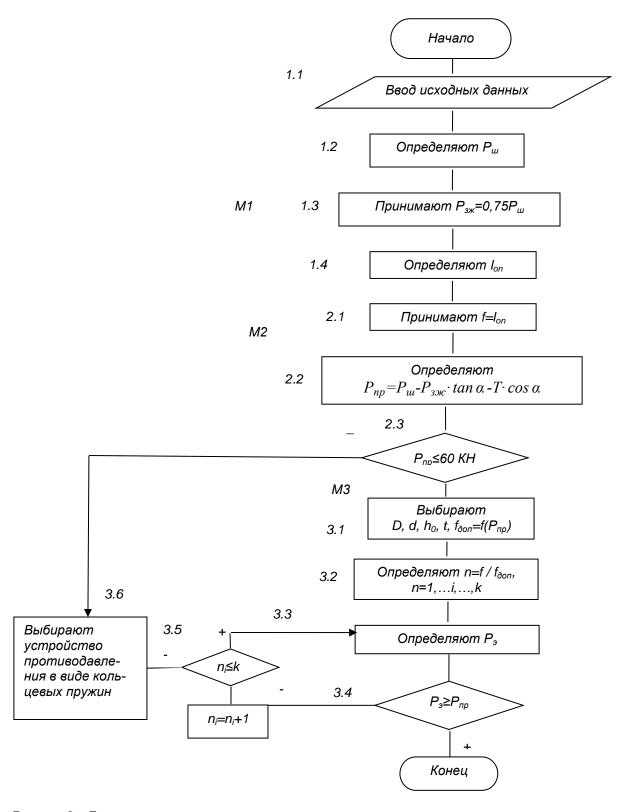


Рисунок 2 – Блок-схема трехмодульного оптимизационного алгоритма

Из соотношений (1) и (2) получаем: $P_{_{3}}=P_{_{11}}-P_{_{33\! K}}\cdot\tan\alpha-T\cdot\cos\alpha \eqno(5)$ Для оптимизации силовых условий за-

жима матриц и упругого элемента, необходимого для обеспечения стабильности зажима в процессе штамповке, разработан трехмо-

дульный оптимизационный алгоритм (рисунок 2). В первом модуле (М1) определяют силовые условия зажима матриц; во втором (М2) определяют усилие противодавления; в третьем модуле (М3) проводят оптимизацию зажима матриц.

В блоке 1.1 вводят исходные данные: диаметр, высоту поковки $(D_n,\ H_n)$; диаметр, высоту и объем исходной заготовки $(D,\ H,\ V)$; площадь $(S_{3ж})$ зажима матриц, угол (α) скоса поверхности обоймы и матриц; модуль упругости $E=2\cdot10^5$ МПа; предел прочности штампуемого металла при температуре окончания штамповки σ_{bt} , МПа; предел упругости материала матриц, σ_{y_s} МПа.

В блоках 1.2 и 1.3 определяют усилия штамповки и зажима матриц. Далее, в блоке 1.4 рассчитывают величину (I_{on}) опускания матриц в процессе их зажима, используя соотношение:

$$P_{3K} = \sigma_{y} \cdot S_{3K}, \tag{6}$$

$$\sigma_{v} = \varepsilon \cdot E, \tag{7}$$

где ϵ – степень упругой деформации, равная:

$$\varepsilon = \frac{B_0 - B_K}{B_0} = \frac{I_{\text{on}} \cdot \tan \alpha}{B_0}$$
 (8)

Здесь в₀ – начальный (до штамповки) размер поперечного сечения матриц;

 ${\sf B}_{\sf K}$ – конечный (после штамповки) размер поперечного сечения матрицы.

$$l_{on} = \frac{0.75 \cdot B_0 \cdot P_{III}}{S_{33K} \cdot E \cdot \tan \alpha}.$$
 (9)

Затем приступают к выполнению второго модуля (M2).

В блоке 2.1 принимают величину сжатия упругого элемента равной величине (I_{on}) опускания матриц в процессе штамповки и определяют усилие (P_{np}) противодавления (блок 2.2) обоймы 1:

$$P_{\pi p} = P_{\mu} - P_{3\pi} \cdot \tan \alpha - T \cdot \cos \alpha. \tag{10}$$

Если окажется (блок 2.3), что величина усилия P_{np} больше 60 кH, [2], то выбирают устройство противодавления в виде кольцевых пружин (блок 3.6). Если условие блока 2.3 выполняется, то переходят к модулю М3 по условию P_{np} выбирают геометрические параметры тарельчатых пружин (блок 3.1). Количество (n) пружин находят из соотношения в блоке 3.2, в котором символ $f_{доп}$ означает допустимый прогиб тарельчатой пружины.

Далее в блоке 3.3 проводят проверочный расчет усилия (P_{9}) сжатия упругого элемента по формуле [2]:

$$P_{3} = \frac{\tan^{2}\beta \cdot f \cdot t}{\ln[1 - d/(1.5 \cdot D)]},$$
(11)

где β – угол конусности тарельчатой пружины;

f – прогиб тарельчатой пружины;

t – толщина листа пружины;

d, D – соответственно размеры диаметра отверстия и наружного диаметра пружины.

В блоке 3.4 проверяют условие $P_3 \ge P_{np}$; если условие не выполняется, т. е. упругий элемент недостаточно жесткий, то в блоке 3.4 добавляют в пакет одну тарельчатую пружину; количество пружин в пакете ограничивается значением «к» (блок 3.5). Если условие блока 3.5 удовлетворяется, то осуществляют перерасчет усилия P_3 упругого элемента. Если количество тарельчатых пружин в пакете (пакетах) превысило значение «к», то в блоке 3.6 выбирают другое устройство противодавления в виде, например, кольцевых пружин [2].

На основе алгоритма составлена компьютерная программа, которая успешно опробована.

Выводы:

- 1. Разработан трехмодульный оптимизационный алгоритм, позволяющий определять:
- а) усилие зажима матриц, необходимое и достаточное для надежного закрытия полости штампа;
- б) усилие противодавления упругого элемента, размещенного под матрицами обеспечивающего стабильность зажима матриц.
- Алгоритм успешно реализован компьютерной программой.

Список литературы

- 1. Атрошенко, А.П. Горячая штамповка труднодеформируемых материалов [Текст] / А.П. Атрошенко, В.И. Федоров Л.: Машиностроение, 1979. 287 с.
- 2. Романовский, В. П. Справочник по холодной штамповке [Текст] / В. П. Романовский, Л.: Машиностроение. 1979. 520 с.

Басова Елена Михайловна, аспирант,

e-mail: 9133604663@mail.ru

Герман Светлана Владимировна, аспирант e-mail: lana86 @list.ru

Поксеваткин Михаил Иванович, к.т.н., профессор ФГБОУ ВПО «Алтайский государственный технический университет им. И. И. Ползунова» (АлтГТУ), г. Барнаул, Россия