ВЛИЯНИЕ ТЕРМОСКОРОСТНОЙ ОБРАБОТКИ РАСПЛАВА НА КАЧЕСТВО АЛЮМИНИЕВЫХ ОТЛИВОК, ПОЛУЧЕННЫХ ПО ГАЗИФИЦИРУЕМЫМ МОДЕЛЯМ

В. Б. Деев¹, К. В. Пономарева¹, А. С. Юдин², А. В. Прохоренко¹, В. Н. Алхимов¹

Сибирский государственный индустриальный университет¹, OOO «НПП Вектор Машиностроения» ², г. Новокузнецк, Россия

В литейном производстве для снижения микронеоднородности металлических расплавов при использовании низкосортной шихты применяют различные виды высокотемпературных перегревов. Однако достигнутое более однородное состояние расплава является обратимым и очень часто в промышленных технологиях литья оно может быть утеряно до момента заливки литейных форм. В основном, это связано с большим технологическим запаздыванием проводимых процессов.

Высокотемпературный тип структуры ближнего порядка расплава можно зафиксировать его быстрым охлаждением перед заливкой путем термоскоростной обработки (ТСО). Эффект ТСО связан с тем, что скорость структурных превращений в жидкой фазе достаточно низкая, несмотря на сравнительно большие скорости процессов диффузии, поэтому быстрое охлаждение расплава может в значительной степени подавлять трансформацию кластеров.

Термоскоростная обработка расплава оказывает эффективное модифицирующее влияние на алюминиевые сплавы [1-3]. Получение мелкозернистой структуры алюминиевых сплавов с помощью TCO является важным резервом повышения механических свойств отливок.

В последние годы отмечены [3 – 5] многочисленные положительные эффекты влияния мелкозернистого возврата на свойства получаемых алюминиевых сплавов при различных добавках в расплав. Такие добавки (в количестве от 5 до 100 %) использовались либо как затравочные перед разливкой расплава, либо сразу загружались в печь вместе с основной шихтой. При этом механические, литейные и служебные свойства сплавов значительно улучшались.

Таким образом, проблему ускоренного охлаждения расплава после высокотемпературного перегрева (и выдержки) до температуры рафинирования или заливки в литейные формы (с целью фиксации эффекта перегрева) можно решать с помощью добавок мелкозернистого возврата, соответствующего составу получаемого сплава, то есть - реализовать термоскоростную обработку (ТСО). Увеличение скорости охлаждения расплава происходит за счет того, что добавки мелкозернистых материалов выступают в качестве плавящихся микрохолодильников; а также создают модифицирующий эффект, внося большое количество потенциальных центров кристаллизации (микронеоднородностей меньших масштабов и активированных нерастворимых примесей). В качестве мелкозернистого возврата целесообразно использовать как специально приготовленную шихтовую заготовку, так и отходы и возврат кокильного литья. Также в качестве добавок твердой шихты для охлаждения расплава можно применять чушковые сплавы, соответствующие получаемым по химическому составу.

В статье приведены результаты исследования влияния термоскоростной обработки расплава на механические свойства тонкостенных корпусных отливок из алюминиевых сплавов АК7, АК12, АК9М2 (ГОСТ 1583-93), полученных литьем по газифицируемым моделям в условиях ООО «НПП Вектор Машиностроения».

При реализации ресурсосберегающей технологии шихтовые материалы включали для каждой марки исследуемых сплавов: чушковые сплавы (около 10 – 15 %), возврат и отходы аналогичного состава (около 85 – 90 %). Плавки проводили в печи ИСТ-0,16. ТСО заключалась в следующем: расплавля-

ли возврат и отходы, расплав перегревали до $980-1000\,^{\circ}\text{C}$ и выдерживали около $5-6\,$ мин; далее расплав охлаждали до температуры $880-890\,^{\circ}\text{C}$ первой (предварительно теплофизически рассчитанной и апробированной экспериментально в лабораторных условиях) порцией чушкового сплава; после проводили охлаждение расплава до температуры заливки $820-830\,^{\circ}\text{C}$ второй (также предварительно рассчитанной) порцией чушкового сплава. Рафинирование осуществляли через $\text{CC}\Phi\text{-}0,6$ при заливке в литейную форму.

При изготовлении газифицируемых моделей для будущих отливок и образцов для исследования механических свойств использовался полистирол фирмы STYROCHEM. Готовые модельные блоки с помощью специального устройства помещали вертикально в подвешенном состоянии в опоку размером 700 х 700 х 700. Устройство для вертикального размещения модельных блоков состояло из передвижной станины, вертикальной стойки, горизонтальной стойки и передвижной рейки. Засыпку песка в опоку проводили одновременно с ее вибрацией, которую осуществляли на опоке посредством закрепленных на ней 2 электрических вибраторов мощностью 3000 об/мин. Частота вибрации составляла ~ 36 Гц. Затем опоку накрывали пленкой, размещали заливочное устройство (состоящее из горизонтальной рамки с пазами и двух цилиндрических емкостей, устанавливаемых через пазы в рамку), вакуумировали литейную форму и производили заливку расплава. После охлаждения осуществляли выбивку отливок, опиловку, пескоструйную зачистку. Механические свойства изучали на образцах (согласно ГОСТ 1583-93), изготовленных из залитых по газифицируемым моделям проб.

Влияние технологии TCO на механические свойства сплавов AK7, AK12, AK9M2 показано в таблице 1. Также приведены механические свойства сплавов, полученных по существующей на предприятии технологии плавки, которая заключалась в том, что высокотемпературный перегрев не проводили, а перегревали расплавы только до $880-890\,^{\circ}$ C, при этом до температуры заливки ($820-830\,^{\circ}$ C) расплав охлаждался вместе с печью. Заливку в литейную форму также осуществляли через CCФ-0,6.

Согласно таблице 1, механические свойства образцов у всех исследуемых сплавов после ТСО, по сравнению со сплавами, полученными по существующей технологии, повысились (в среднем): временное сопротивление разрыву σ_B — на 14 — 22 %, относительное удлинение δ — на 32 — 75 %.

Таблица 1 — Влияние технологии плавки на механические свойства образцов из алюминиевых сплавов, полученных литьем по газифицируемым моделям

Технология плавки	Сплав	Механические свойства литых образцов	
		σ _в , МПа	δ, %
Существующая	AK7	174185	2,22,6
TCO		203210	3,33,5
Существующая	AK12	181190	4,14,5
TCO		214220	6,77,2
Существующая	АК9М2	200207	1,51,8
TCO		227233	2,12,3

ВЛИЯНИЕ ТЕРМОСКОРОСТНОЙ ОБРАБОТКИ РАСПЛАВА НА КАЧЕСТВО АЛЮМИНИЕВЫХ ОТЛИВОК, ПОЛУЧЕННЫХ ПО ГАЗИФИЦИРУЕМЫМ МОДЕЛЯМ

Внедрение технологии TCO в условиях OOO «НПП Вектор Машиностроения» при выплавке сплавов AK7, AK12, AK9M2 и изготовлении тонкостенного корпусного литья по газифицируемым моделям позволило получить за счет снижения (до 10 – 15 % в завалке) расхода чушковых материалов существенный экономический эффект.

Достоинством технологии ТСО является то, что она может успешно применяться в литейных и машиностроительных цехах при плавке алюминиевых сплавов для отливок, получаемых различными способами литья (в песчаные формы, в кокиль, по газифицируемым моделям и др.). При этом за счет модифицирующего эффекта данной обработки обеспечивается повышение комплекса механических и служебных свойств литых изделий. При реализации предлагаемой технологии в шихте возможно использовать до 90 % вторичных материалов собственного производства. Недостатком технологии ТСО является то, что оптимальные режимы перегрева и количество добавляемой твердой мелкозернистой шихты необходимо определять экспериментально в каждом конкретном случае производства. И, кроме того, не все плавильные агрегаты, применяемые при производстве алюминиевых отливок, могут обеспечить требуемые температуры перегрева расплава.

Выводы: Разработана и реализована в производственных условиях ресурсосберегающая технология получения алюминиевых сплавов для корпусного тонкостенного литья по газифицируемым моделям, включающая термоскоростную обработку расплава. Технология способствовала повышению уровня механических свойств отливок.

Список литературы:

- 1. Ри Хосен Влияние структурных превращений в алюминиевых расплавах на их свойства / Ри Хосен, Е.М. Баранов // Литейное производство. 1986. № 11. С. 12, 13.
- 2. Деев В. Б. Ресурсосберегающая технология получения литейных алюминиевых сплавов / В. Б. Деев, В. А. Дегтярь, А. И. Куценко [и др.] // Известия вузов. Черная металлургия. 2007. № 12. С. 33–36.
- 3. Никитин В. И. Наследственность в литых сплавах / В. И. Никитин, К. В. Никитин. М: Машиностроение-1, 2005. 510 с.
- 4. Деев В. Б. Получение герметичных алюминиевых сплавов из вторичных материалов / В. Б. Деев. М.: Флинта: Наука, 2006. 218 с.
- 5. Деев В.Б. Об использовании физических модифицирующих воздействий при литье АІ-сплавов / В.Б. Деев, И.Ф. Селянин, С.П. Мочалов [и др.] // Литейное производство. 2012. № 5. С. 16–18.