ОБЗОР МЕТОДОВ КОНТРОЛЯ ВСХОЖЕСТИ СЕМЯН ПШЕНИЦЫ ПО ИЗМЕНЕНИЮ МЕМБРАННОГО ПОТЕНЦИАЛА

Н.Н. Мерченко, С.П. Пронин, А.Г. Зрюмова

Алтайский государственный технический университет им. И.И. Ползунова г. Барнаул

Статья посвящена анализу методов контроля всхожести зерен пшеницы по изменению мембранного потенциала.

Ключевые слова: метод контроля, мембранный потенциал, зерна пшеницы, всхожесть.

На сегодняшний день контроль качества зерен пшеницы осуществляется методом, представленном в ГОСТ 12038—84 [1]. Этот метод действует с 1986 года, является трудоемким, отличается длительным процессом подготовки к исследованию, отсутствует автоматизация процесса. Поэтому разработка методов контроля всхожести семян пшеницы с минимальными временными и материальными затратами является актуальной проблемой сельскохозяйственного производства.

В первых работах по исследованию изменения мембранного потенциала с целью контроля всхожести семян пшеницы применялась виртуальная система исследования электропроводности зерен пшеницы. Было исследовано изменение электропроводности зерен пшеницы в зависимости от температуры воды. Зерно закреплялось в диэлектрическом приспособлении и частично опускалось в воду с заданной температурой. В начальном (сухом) состоянии зерно обладает очень высоким сопротивлением. Когда зерно начинает впитывать воду, сопротивление падает, вместе с ним падает и напряжение [2]. Основная особенность заключается в том, что зерно может менять свое состояние как от температуры воды, так и от концентрации растворенной в ней соли. Недостаток разработанного метода – это невысокая достоверность результатов исследования, проблематичность применения полученных результатов для контроля всхожести зерен пшеницы.

Следующим этапом проводился контроль качества зерен пшеницы по потенциалу покоя. В основе метода контроля лежат исследования потенциала покоя зерна пшеницы с использованием формулы Нернста. Изменения напряжения снимали с помощью мультиметра, один щуп помещали внутрь зерна, а второй снаружи. В результате проведенных исследований выявлено, что в пер-

вые пять минут процесса набухания напряжение возрастает до 2,7 мВ, что является началом стационарного режима, а измеренный потенциал является потенциалом покоя. Начиная с пятой минуты процесс стабилизируется.

Зная измеренный потенциал, по формуле Нернста можно рассчитать соотношений концентраций ионов калия внутри и снаружи, что и характеризует качество зерна по «запасу» носителей заряда и проницаемости мембраны [3].

Следующим шагом были проведены исследования зависимости изменения потенциала действия зерен пшеницы от известной всхожести. Перед началом эксперимента зерна пшеницы выводили из состояния покоя по методике, описанной в ГОСТ 12038-84. Для измерения потенциала действия зерен пшеницы применяли плату сбора данных, подключенную к ПК, что обеспечивало дискретность отсчета 3,3 мс. В результате проведенных экспериментов были установлены характерные отличия потенциала действия с высокой и низкой всхожестью. Начальное значение потенциала действия составило 110-180 мВ. [4] В процессе исследования потенциала покоя и потенциала действия зерен пшеницы не учитывался один из важных факторов, воздействующих на потенциал зерна температура в процессе исследования.

Было проведено теоретическое исследование изменения потенциала действия зерен пшеницы в зависимости от температуры. Исследования основаны на формуле Нернста. Выявлено, что при проведении эксперимента необходимо обеспечить стабильность температуры 0,5°C [5].

С целью стабилизации внешних условий проведения экспериментов была разработана специальная экспериментальная установка для исследования мембранного потенциа-

ОБЗОР МЕТОДОВ КОНТРОЛЯ ВСХОЖЕСТИ СЕМЯН ПШЕНИЦЫ ПО ИЗМЕНЕНИЮ МЕМБРАННОГО ПОТЕНЦИАЛА

ла зерен пшеницы.

Установка представляет собой термокамеру, которая позволяет задавать и автоматически поддерживать температуру на начальном этапе процесса подготовки зерен пшеницы к измерениям мембранного потенциала [6].

Используя разработанную экспериментальную установку, проведены исследования воздействия температуры на изменение мембранного потенциала зерна пшеницы. В экспериментальных исследованиях использовалось зерно пшеницы высокой и низкой всхожести. В процессе экспериментов задавали различную начальную температуру в термокамере экспериментальной установки, в которой осуществляется замачивание зерен пшеницы. Результаты исследования показали, что значение мембранного потенциала у всех зерен увеличивается с ростом температуры по-разному, поэтому изменение температуры может выступать в качестве одного из отличительных признаков всхожести семян пшеницы. По сравнению с результатами исследования без стабилизации начальной температуры можно отметить следующие особенности - характерные изменения вариабельного потенциала для семян со всхожестью 87% и 97%. При заданной начальной температуре 22°C начальное значение вариабельного потенциала у зерен с низкой всхожестью 87% достигает -28 мВ, а для зерен пшеницы с всхожестью 96% начальное значение вариабельного потенциала равно -149 мВ.

Максимальное значение вариабельного потенциала, полученное за время измерения, для зерен пшеницы с высокой всхожестью составляет 14 мВ. Зерна пшеницы с низкой всхожестью имели максимальное значение потенциала равное 1 мВ. При заданной начальной температуре 220С наблюдается изменение температуры в камере при проращивании семян пшеницы. Исследование зависимости изменения вариабельного потенциала от начальной температуры показало, что с увеличением температуры происходит уменьшение динамического диапазона изменения вариабельного потенциала, что приводит к уменьшению отношения сигнал/шум и, как следствие, к возрастанию погрешности. Поэтому задание начальной температуры 20°C - 22°C является оптимальной с точки зрения отличительного признака всхожести зерна при повышении температуры в процессе проращивания зерен [7].

Следующим этапом было проведено ис-

следование и моделирование контроля всхожести зерна пшеницы с использованием формулы Нернста. Были выполнены экспериментальные измерения мембранного потенциала и проведена оценка качества зерен пшеницы с использованием формулы Нернста. У зерен пшеницы с различной всхожестью наблюдаются различные мембранные потенциалы: у зерен со всхожестью 87% мембранный потенциал равен -184 мВ, а у зерен со всхожестью 97% составляет -63 мВ. Факт существенного различия объясняется тем, что у зерен пшеницы с 97% всхожестью более высокая проницаемость мембраны по сравнению с зернами 87% всхожестью. Поскольку замачивание зерен проводилось дистиллированной водой, то концентрации ионов на внутренней и внешней оболочек при высокой их проницаемости стремятся к балансу. По формуле Нернста мембранный потенциал зависит от температуры. Экспериментально подтверждено, что с увеличением температуры мембранный потенциал возрастает у зерен пшеницы с различной всхожестью. Однако его изменения носят индивидуальный характер. Для зерен с 97% всхожести в диапазоне температур от 295К до 298К мембранный потенциал возрастает по линейному за-(коэффициент корреляции равен R=0,95). При этом диапазон изменения мембранного потенциала составляет всего 0,02 В. С повышением температуры проницаемость мембраны изменяется незначительно. Для зерен пшеницы 87% всхожести в диапазоне температур от 293К до 303К мембранный потенциал возрастает явно не по линейному закону. В диапазоне температур от 295К до 298К наблюдается резкое изменение мембранного потенциала, происходит существенное увеличение проницаемости мембраны зерен пшеницы. Дальнейшее повышение температуры приводит к незначительному изменению проницаемости мембраны. Изменение мембранного потенциала для зерен пшеницы с 97% всхожести и для зерен с 87% всхожести аналогично в диапазоне температур от 298К до 303К [8].

На основе проведенных исследований был разработан метод контроля всхожести зерен пшеницы по мембранному потенциалу. Метод основан на выполненных исследованиях изменения мембранного потенциала зерен пшеницы с высокой и низкой всхожестью в зависимости от различной начальной температуры, устанавливаемой на стадии подготовки зерен пшеницы к эксперименту. В основе разработанного метода лежит модель

изменения мембранного потенциала в диапазоне температур от 20°C до 25°C. Выявлена следующая закономерность: для зерен пшеницы со всхожестью 97% зависимость изменения мембранного потенциала от температуры носит нелинейный характер. А для зерен пшеницы со всхожестью 87% изменение мембранного потенциала от температуры представляет собой линейную зависимость.

Также выявлено, что при температуре 25° С свойства зерен пшеницы со всхожестями 97% и 87% становятся идентичными. Контроль всхожести зерен пшеницы по мембранному потенциалу при температуре свыше 25° С не дает достоверных результатов.

Проведенные эксперименты с точки зрения мембранного потенциала научно обосновывают регламентируемый ГОСТом диапазон температур проращивания зерен пшеницы от 20°С до 22°С. Именно в этом диапазоне температур наблюдается существенная разница мембранного потенциала для зерен с низкой и высокой всхожестью..

Однако время исследования всхожести зерен пшеницы по методу, изложенному в ГОСТ, составляет 10-12 дней, в разработанном методе контроля всхожести время на подготовку зерен пшеницы сокращено до 12 часов.

Вывод

Проведен анализ методов контроля всхожести зерен пшеницы на основе изменения мембранного потенциала в зависимости от всхожести.

Контроль всхожести по исследованию электропроводности зерен пшеницы показал невысокую достоверность результатов измерений. Методы исследования качества зерна пшеницы по потенциалу покоя и потенциалу действия обладают одним существенным недостатком — в процессе исследования не учитывалась температура окружающей среды. На основе формулы Нернста теоретически показано воздействие температуры на изменение потенциала действия. Для стабилизации условий проведения исследований необходимо использовать термокамеру, в которой производится задание и поддержание температуры.

В результате проведенных исследований изменения мембранного потенциала в зависимости от температуры, были выявлены оптимальные условия проращивания зерен

пшеницы — 20° C- 22° C. ГОСТом 12038 — 84 установлена температура проращивания зерн пшеницы при постоянной температуре 20° C. Таким образом, при указанной температуре наблюдаются существенные различия и мембранного потенциала, и проростков для зерен с низкой и высокой всхожестью.

Устранив выявленные недостатки, получен метод контроля всхожести зерен пшеницы по мембранному потенциалу в зависимости от различной начальной температуры, установленной на стадии подготовки зерен пшеницы к эксперименту.

СПИСОК ЛИТЕРАТУРЫ

- 1. ГОСТ 12038–84. Семена сельскохозяйственных культур. Методы определения всхожести. М.: Изд-во стандартов, 1986.
- 2. Пронин С.П., Солодова И.А., Хомутов О.И., Матлаев А.И. Применение виртуальной системы для исследования изменения электропроводности зерна пшеницы// Ползуновский Альманах. 2007, №3. с.80 81
- 3. Матлаев А.И., Пронин С.П. Контроль качества зерна пшеницы по потенциалу покоя // Ползуновский Альманах. 2008, 2. c.110 111
- 4. Матлаев А.И., Пронин С.П. Зависимость изменения потенциала действия зерна пшеницы от всхожести // Ползуновский Альманах. 2009, 2. с.138 139
- 5. Пронин С. П., Зрюмова А. Г., Мерченко Н. Н., Бащук Л. М, Гребенникова И. А., Каратеева А. Н.. Исследование изменения потенциала действия зерна пшеницы// Ползуновский Альманах. 2010, №2. с.204 206
- 6. Шереметьев М.В., Зырянов А.А., Мерченко Н.Н., Зрюмова А.Г., Пронин С.П. Экспериментальная установка для исследования потенциала действия зерен пшеницы // Ползуновский Альманах. 2011, №1. с.177 –178.
- 7. Мерченко Н.Н., Пронин С.П., Зрюмова А.Г. Исследование воздействия температуры на изменение вариабельного потенциала зерна пшеницы// Ползуновский Альманах. 2012, №2. с.153 155
- 8. Мерченко Н.Н., Пронин С.П., Зрюмова А.Г. Исследование и моделирование контроля всхожести зерна пшеницы с использованием формулы Нернста // Естественные и технические науки, №2, 2013. С.189 192.

Мерченко Надежда Николаевна — аспирантка, тел.: 8-923-647-3443, e-mail: mnn-t@mail.ru; Пронин Сергей Петрович — д.т.н., профессор, заведующий кафедрой информационных технологий; Зрюмова Анастасия Геннадьевна — к.т.н., доцент, a.zrumova@mail.ru