ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПЕРВИЧНЫХ ПРЕОБРАЗОВАТЕЛЕЙ КОНТАКТНЫХ КОНДУКТОМЕТРОВ НА ПЕРЕМЕННОМ НАПРЯЖЕНИИ ПРЯМОУГОЛЬНОЙ ФОРМЫ

Б.С. Первухин, Н.В. Суворова, В.Б. Юшкова

Алтайский государственный технический университет им. И.И. Ползунова г. Барнаул

Статья посвящена разработке метода определения параметров контактного ПИП. Предложенный метод заключается в определении параметров первичного преобразователя при питании измерительной цепи переменным напряжением вида и определении проводимости первичного преобразователя в разные моменты времени.

Ключевые слова: первичный преобразователь, импеданс, постоянная ПИП, переходная проводимость.

Кондуктометрические методы анализа удельной электропроводности жидких сред весьма разнообразны. У каждого метода свои достоинства и недостатки. Поэтому совершенствование методов кондуктометрического анализа всегда будет актуальной задачей.

Источником систематической погрешности, которая в основном определяет основную погрешность прибора является составляющая импеданса электродов ПИП. [1.2].

Существует метод определения величины, составляющих импеданса электродов [3], который заключается в измерении сопротивления первичных преобразователей с раствором известной электропроводности удельной нескольких частот при параллельной и последовательной схеме замещения первичного преобразователя и обработки полученных значений для определения составляющих импеданса (поляризационное сопротивление электродов. активное сопротивление анализируемого раствора и т.д.).

Одним из возможных форм напряжения питания измерительных цепей контактных кондуктометров является переменное напряжение прямоугольной формы (рисунок 1). Это напряжение может быть представлено в следующем виде:

$$u = \frac{4U}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin \frac{(2n-1)\tau\pi}{2} \cos[(2n-1)\omega t],$$

где u – мгновенное значение напряжения;

U – амплитуда питающего напряжения;

ω – угловая часта;

 τ – длительность импульса в долях π .

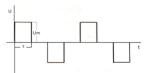


Рисунок 1 — Форма напряжения питания измерительной цепи

Проводимость ПИП на n-ой гармонике Y_n напряжения питания при использовании эквивалентной схемы замещения (рисунок 2) равна:

$$Y_{n} = \frac{(R+R_{n}) + (2n-1)^{2} \varpi^{2} C^{2} R_{n}^{2} R}{(R+R_{n})^{2} + (2n-1)^{2} \varpi^{2} C^{2} R_{n}^{2} R^{2}} + j \frac{(2n-1) \varpi C R_{n}}{(R+R_{n})^{2} + (2n-1)^{2} \varpi^{2} C^{2} R_{n}^{2} R^{2}}$$

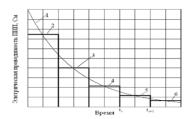
Условные обозначения: R – сопротивление анализируемого раствора

> Рисунок 2 – Эквивалентная схема замещения ПИП

Этот метод требует больших временных затрат и сложных расчетов, что значительно усложняет анализ полученных данных.

определения Для параметров проще использовать контактного ПИП переходную функцию по току (переходная проводимость). Переходная проводимость ровна току в цепи, если на псе подать постоянное напряжение в 1В. При этом длительность необходимо обеспечить импульса такую, что к началу следующего импульса выполнялись нулевые начальные Переходная функция по условия. проводимость) (переходная g(t)схемы замещения (рисунок 2) равна:

$$g(t) = \frac{1}{R+R_n} + \frac{R_n}{R(R+R_n)} exp\left(-\frac{R+R_n}{RR_nC}t\right).$$


Из выражения для переходной проводимости видно, что при $t \rightarrow 0$ $Y \rightarrow 1/R$, а при $t \rightarrow \infty$ $Y \rightarrow 1/(R + R_n)$. Это согласуется с предыдущими выводами. В дальнейшем для анализа возможных путей определения параметров контактных первичных преобразователей используем выражение для переходной проводимости.

Предлагаемый способ заключается в определения параметров первичного преобразователя при питании измерительной переменным напряжением (рисунок 1) и определении проводимости первичного преобразователя в моменты времени. В качестве критерия равновесия используется равенство нулю разницы токов через ПИП и канал за интервал времени меньший, длительность импульса напряжения питания измерительной цепи.

Пояснить этот способ можно, рассмотрев рисунок 3. Проводимость первичного преобразователя определяется в каждом интервале ограниченного t_i и t_{i+1} .

Проводимость канала сравнения, при которой измерительная цепь будет считаться находящейся в состоянии равновесия, в этот интервал времени будет равна:

Определить параметры первичного преобразователя и составляющие электродного импеданса можно, если аппроксимировать экспериментальные g_{0i} данные в виде следующей зависимости: g(t) = a + b exp(-ct). За время, при котором определялась g_{0i} берется среднее значение интервала, в котором эта электрическая проводимость определялась.

Условные обозначения:

1 — аппроксимация средних значений; 2 — в интервале от 0 до $0,2\tau$; 3 — в интервале от $0,2\tau$ до

 $0,4\tau;~4$ — в интервале от $0,4\tau$ до $0,6\tau;~5$ — в интервале от $0,6\tau$ до $0,8\tau;~6$ — в интервале от $0,8\tau$ до $\tau.$

Рисунок 3 — Среднее значение переходной проводимости

Составляющие суммарного импеданса электродов ПИП можно определяют из соотношений R_n =bR/a, C= $1/R^2bc$. Необходимую для определения R_n и С величину R можно получить из зависимости g(t) при t = 0 при этом g(o) = 1/R = a + b. Окончательно величины составляющих импеданса электродов ПИП равны:

$$R_n = \frac{b}{a(a+b)}, C = \frac{a+b}{bc}$$

Определение постоянной ПИП и сопротивления соединительных проводов проводится с использованием аппроксимации экспериментальных результатов определения R при различных удельных сопротивлениях измеряемого раствора. В качестве аппроксимирующей функции используется линейная зависимость вида:

$$R=r + A\rho$$
;

где r- сопротивление соединительных проводов;

А- постоянная ПИП;

р- удельное сопротивление раствора.

Предложенный метод значительно упрощает расчеты и анализ полученных результатов, что и являлось первоначальной целью настоящего исследования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Первухин Б.С. Методическая погрешность контактных кондуктометров.// Естественные и технические науки 2011 № 1.- С.176 182.
- 2. Первухин Б.С. Проектирование контактных кондуктометров с использованием в качестве критерия оптимизации заданной систематической погрешности.// Приборы и системы. Управление, контроль, диагностика. -2011. № 2 С.41 44.
- 3. Первухин Б.С. Определение параметров и контактных первичных преобразователей кондуктометров.// Измерительная техника -2008 № 3-C. 61-63.

Первухин Борис Семенович к.т.н., доцент, e-mail: bspervuhin@mail.ru; Юшкова Вера Борисовна – старший преподаватель, Суворова Наталья Владимировна – студентка.