УПРАВЛЕНИЕ КАЧЕСТВОМ КРЕПЕЖНЫХ ЭЛЕМЕНТОВ, ПОЛУЧЕННЫХ МЕТОДОМ ПЛАСТИЧЕСКОГО СВЕРЛЕНИЯ, ЗА СЧЕТ ИЗМЕНЕНИЯ ФОРМЫ РАБОЧЕЙ ЧАСТИ ИНСТРУМЕНТА

Е. Ю. Татаркин, Р. А. Анзыряев

Алтайский государственный технический университет им И. И. Ползунова, г. Барнаул, Россия

При пластическом сверлении пуансонсверлом с конической формой рабочей части преобладающим видом брака является формирование разрывов в зоне выхода инструмента (рисунок 1).

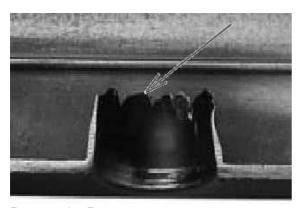


Рисунок 1 – Разрывы в теле узла крепления.

Разрывы приводят к разрушению деталей машин в процессе их эксплуатации. Выявление причин формирования разрывов в узлах крепления в процессе пластического сверления и поиск методов решения этой проблемы, являются актуальной задачей.

Для объяснения возникновения разрывов выдвинута гипотеза: разрывы возникают тогда, когда коническая часть инструмента выходит из зоны обработки. В этот момент на стенку втулки действует резко увеличивающаяся радиально направленная сила. Кроме того, разрывы могут формироваться и при снижении пластичности обрабатываемого металла на этапе формообразования крепежного элемента. Для максимального повышения пластичности обрабатываемого металла температура на поверхности трения должна быть выше температуры рекристаллизации, но ниже температуры перегрева и пережога. Решением данной проблемы является применение в процессе пластического сверления пуансон-сверла с криволинейной формой рабочей части, позволяющей избежать резкого увеличения радиальной силы в зоне выхода рабочей части инструмента, а также поддерживать оптимальную температуру и пластичность обрабатываемого материала. С целью экспериментальной проверки гипотезы, которая объясняет формирование разрывов металла в теле узла крепления, были проведены эксперименты.

Для проведения экспериментов, был изготовлен инструмент с криволинейной формой рабочей части (диаметр инструмента d_1 = 9,2 мм; материал пуансон-сверла — твердый сплав ВК8). Пуансон-сверло изготавливалось из цилиндрической заготовки диаметром 9.2 мм, с последующим шлифованием рабочей части чашечным кругом на шлифовально-заточном станке с ЧПУ ANCA RX7.

Обработки проводили на вертикальнофрезерном станке модели 6М12П. Заготовка устанавливалась на опору и закреплялась в тисках. Пуансон-сверло устанавливалось в цанговый патрон.

Исходные данные для всех экспериментов:

- Диаметр инструмента $d_1 = 9,2$ мм;
- Частота вращения инструмента ω = 1600 об/мин:
 - Подача s=160 мм/мин;
- Материал заготовок конструкционная сталь Ст3;
- Габаритные размеры заготовок, мм: 3x65x110.

Толщина заготовки выбиралась в соответствии с рекомендациями о соотношении между диаметром отверстий и толщиной металла. Диаметр отверстия должен не более, чем в 2-3 раза превышать толщину материала

Длина разрывов составила 0,5 мм - 1,0 мм (рисунок 2). На кромке нижней части крепежного элемента сформирован «отросток», образованный в момент, когда вершина формируемого узла крепления оторвалась, а пу-

УПРАВЛЕНИЕ КАЧЕСТВОМ КРЕПЕЖНЫХ ЭЛЕМЕНТОВ, ПОЛУЧЕННЫХ МЕТОДОМ ПЛАСТИЧЕСКОГО СВЕРЛЕНИЯ, ЗА СЧЕТ ИЗМЕНЕНИЯ ФОРМЫ РАБОЧЕЙ ЧАСТИ ИНСТРУМЕНТА

ансон-сверло начало выходить из зоны обработки. Диаметр отростка составил около 5,5 мм, высота - 2,5 мм.

Высота нижней части узла крепления H_H = 7.2 мм;

Наружный диаметр основания нижней части узла крепления D_B = 11,3 мм.

Рисунок 2 — Нижняя часть узла крепления. Подача 160 мм/мин.

Фотографии образцов после при сверления пуансон-сверлом с конической формой рабочей части и углом при вершине 60° приведены на рисунке 3.

Высота нижней части узла крепления H_H = 5.7 мм:

Наружный диаметр основания нижней части узла крепления D_B = 11,2 мм. На нижней части узла крепления наблюдается множество разрывов длиной около 1,5-2 мм.

Проведенные эксперименты позволяют сделать вывод о том, что применение пуансон-сверла с криволинейной формой рабочей части уменьшает длину, и количество разры-

Рисунок 3 — Нижняя часть узла крепления. Подача 160 мм/мин. Инструмент с конической формой рабочей части.

вов на кромке нижней части узла крепления. Это подтверждает гипотезу о целесообразности применении в процессе пластического сверления пуансон-сверла с криволинейной формой рабочей части, позволяющем избежать резкого увеличения радиальной силы в зоне выхода рабочей части инструмента, что снижает влияние формирования разрывов на кромке нижней части узла крепления.

В процессе проведения экспериментов с применением данного инструмента установлено формирование на кромке втулки «отростка». Анализ полученных данных позволяет описать механизм образования отростка. Данный элемент формируется в момент отрыва вершины формируемого узла крепления и начала выхода пуансон-сверла из зоны обработки. Отрыв вершины формируемого узла крепления объясняется возникновением критически высокой осевой силы при вершине инструмента для постоянно уменьшающейся толщины стенок, и слишком малой радиально направленной силы, которая вытесняет металл в радиальном направлении, образуя отверстие.