ИЗМЕРИТЕЛЬНАЯ ОСНАСТКА ДЛЯ ДИАГНОСТИРОВАНИЯ РЕЖУЩИХ ЭЛЕМЕНТОВ МОДУЛЬНОГО ИНСТРУМЕНТА

В. А. Абанин, А. Н. Ромашев, В. В. Беломыцев, Н. И. Десятов

Бийский технологический институт,

г. Бийск, Россия

Целью данной работы является разработка измерительной оснастки (средства измерений), встроенного в модульную инструментальную оснастку (МИО) [1] для получения диагностической информации о составляющих вектора силы резания действующих непосредственно на режущий инструмент (РИ).

Одним из наиболее распространенных способов контроля состояния РИ является способ, основанный на измерении силовых параметров процесса резания. Суть реализованного в данных исследованиях метода построения измерительной оснастки заключается в деформировании упругого элемента многокомпонентного датчика силы резания [2] встроенного в МИО. При этом многокомпонентный датчик силы выполняется автономным функциональным узлом (измерительным модулем), измерительные и информационные возможности которого планируется расширить путем дополнительного размеще-

ния цепей измерения температуры и вибрации. Исследование и контроль метрологических характеристик измерительного модуля обеспечивается экспериментальными приемами, применяемыми в силоизмерительной и испытательной технике [3].

Для выбора базовой конструкции упругого элемента измерительной оснастки на первом этапе исследований проводилось моделирование силовых процессов в МИО с использованием метода конечных элементов [4]. Методика моделирования включала анализ полей деформации во внутреннем объеме инструментальной оснастки с учетом предварительного усилия прижатия сменного модуля к корпусу, а также различных значений силы резания и направлений ее действия в пространстве.

Моделирование полей деформаций в МИО проведено в несколько последовательных этапов, отраженных в таблице.

Lear Learning					
Nº	Усилие прижатия МИО, кН	Составляющие усилия резания, кН			Максимальная де- формация, мм
		Px	Ру	Pz	
1	20	-	-	-	0,020
2	20	4	4	4	0,032
3	20	4	4	0	0,028
4	20	0	4	4	0,029

На первом этапе модель нагружалась только усилием прижатия инструментальной оснастки к корпусу. Результаты моделирования первого этапа моделирования подтверждают, что максимальные смещения в детали составляют 0,0197 мм и не превышают предельных деформаций по условиям жесткости 0,03-0,05 мм.

Из анализа второго и последующих этапов моделирования следует, что при введении в модель дополнительной силы — силы резания, меняется распределение составляющих вектора силовой нагрузки, но максимальная деформация не превышает предельно допустимого значения. Для проверки подлинности результатов моделирования был изготовлен опытный образец упругого элемента из стали ХВГ и производилось его нагружение на разрывной машине P-10 (рисунок 1).

Рисунок 1 – Упругий элемент на разрывной машине P-10

ИЗМЕРИТЕЛЬНАЯ ОСНАСТКА ДЛЯ ДИАГНОСТИРОВАНИЯ РЕЖУЩИХ ЭЛЕМЕНТОВ МОДУЛЬНОГО ИНСТРУМЕНТА

По результатам нагружения был построен график зависимости деформации упругого элемента от воздействующего на него усилия (рисунок 2).

Как видно из графиков полученные в результате моделирования данные совпадают с реальными результатами, поэтому полученную форму упругого элемента можно считать окончательной.

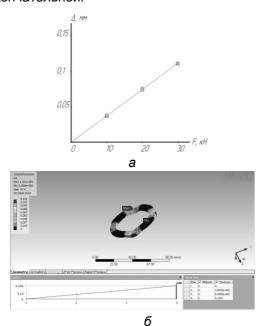


Рисунок 2 — График зависимости деформации упругого элемента от воздействующего на него усилия: a — практический; δ — теоретический

Полученные данные о деформации применены для обоснования базовой конструкции упругого элемента многокомпонентного датчика, физический принцип работы которого основан на тензорезисторном эффекте [5]. Результаты моделирования позволили обосновать зоны размещения тензорезисторов, уровни воспринимаемых тензорезисторами деформаций, геометрические размеры тензорезисторов с учетом ограничений на предельные перемещения модульной оснастки при ее работе.

Упругий элемент многокомпонентного датчика силы резания, изготовлен кольцевой формы, на половине высоты которого выполнены симметрично относительно друг друга в плоскости перпендикулярной вертикальной оси кольца четыре плоские балки, воспринимающие деформацию от действия вектора силовой нагрузки (рисунок 3). Узлы ввода силы размещены в середине балок. Нижняя

сторона кольца опирается на четыре выступа, являющиеся силоопорными элементами балок, а на противоположных сторонах каждой балки размещены тензорезисторы, соединенные в гальванически независимые мостовые цепи. Место установки упругого элемента во внутреннем объеме модульной оснастки выбрано на основе анализа модели силового процесса в модульной инструментальной оснастке. В датчике предпочтительно применять фольговые тензорезисторы с базой 3 мм с сопротивлением 400 Ом. По сравнению с проволочными тензорезисторами они имеют повышенную чувствительность к деформации упругого элемента, что позволяет повысить уровень выходных сигналов. Кроме этого у фольговых тензорезисторов меньший уровень температурных составляющих погрешностей и они более устойчивы к неинформативному воздействию составляющих деформации упругих элементов. При соответствующем подборе материала упругого элемента в конструкции измерительного модуля допустимо применение металлопленочных тензорезисторов, изготовленных по микроэлектронной технологии из наноструктурированных материалов с пониженной чувствительностью к воздействию температурных нагрузок при одновременном размещении функциональных узлов преобразования аналоговых сигналов в цифровой код, микропроцессоров и интерфейсом для ввода информации ПЭВМ. Современная микроэлектронная технология обеспечивает жесткое закрепление тензорезисторов на упругих элементах, что исключает нестабильные свойства клеевого закрепления. Помимо этого групповая технология изготовления тензорезисторов мостовых цепей формирует в едином технологическом процессе тензорезисторы с идентичными параметрами (коэффициенты тензочувствительности, начальные сопротивления), что создает необходимые условия для обеспечения высокоточного измерения составляющих вектора силы. введением в модульную инструментальную оснастку дополнительно датчиков (сенсоров) измерения температуры и параметров вибрации измерительный модуль является многопараметрической цифровой сенсорной измерительной системой [6]. Она позволит обосновывать физические критерии диагностирования состояния лезвия режущего инструмента, реализуемые программным путем и с выдачей соответствующих команд по корректировке хода технологического процесса.

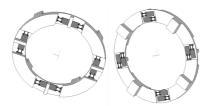


Рисунок 3 — Расположение тензорезисторов мостовых цепей на упругом элементе датчика силы

Принцип работы измерительной оснастки заключается в следующем (рисунок 4). При закреплении сменного инструментального модуля 3 происходит начальное деформирование упругого элемента 1 за счет того, что толщина упругого элемента h больше глубины паза. в котором он находится, при этом деформирование упругого элемента 1 ограничивается усилием закрепления инструментального модуля 3. Таким образом, происходит требуемая первоначальная деформация упругого элемента 1 и обеспечивается необходимая жесткость модульной инструментальной оснастки. При точении на режущий элемент инструментального модуля 3 действует сила резания. При этом деформация инструментального модуля 3 через узлы ввода упругого элемента 1, соприкасающиеся с торцом инструментального модуля 3, передается на плоские балки упругого элемента 1 за счет имеющегося зазора Δ между торцами корпуса 2 и инструментального модуля 3. Тензорезисторы, закрепленные на плоских балках упругого элемента 1, изменяют свое сопротивление пропорционально деформации плоских балок, которая, в свою очередь, пропорциональна приложенной нагрузке. вследствие чего на выходе мостовых цепей формируются электрические сигналы, пропорциональные составляющим вектора силы резания.

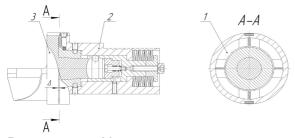


Рисунок 4 — Модульная инструментальная оснастка со встроенным упругим элементом многокомпонентного датчика силы

Дальнейшее совершенствование измерительной оснастки планируется провести в создании многопараметрической сенсорной информационно-измерительной системы диагностирования состояния лезвия режущего инструмента на основе физических критериев, основанных на комплексном анализе результатов измерения составляющих силы резания, температуры и параметров вибрации.

Применение средств автоматизированного диагностирования модульной инструментальной оснастки позволит снизить простои оборудования, связанные с потерей инструмента работоспособности, а также сократить затраты времени на подналадку инструмента (его размерное регулирование) за период его работы без замены.

Список литературы:

- 1. Патент RU № 97662, 2010 г.
- 2. Патент на изобретение RU № 2455121, 2012 г.
- 3. Базжин Ю.М. Исследование и разработка электротензометрических силоизмерительных датчиков высокой точности для промышленного контроля: Дис.канд. техн. наук. — М., 1964. — 181 с.
- 4. Беломыцев В.В., Ромашев А.Н., Абанин В.А. Модульная инструментальная оснастка со встроенным многокомпонентным датчиком для контроля составляющих силы резания. // Сборник работ победителей отборочного тура Всероссийского конкурса научно-исследовательских работ стедентов, аспирантов и молодых ученых по нескольким междисциплинарным напрвлениям, г. Новочеркасск, октябрь-ноябрь 2011 г. / Мин-во образования и науки РФ, Юж.-Рос. Гос. Техн. Ун-т. (НПИ). Новочеркасск: Лик, 2011. 126-129 с.
- 5. Адамов Ю.Ф., Сигатуллин А.Г., Сомов О.А. Тенденции развития сенсорных систем и интеллектуальных датчиков/ Датчики и системы- № 5.- 2011.- с. 58-59.
- 6. В.А. Абанин, Е.А. Абанина, Г.А. Привалов.Совершенствование методов и средств измерения силовых параметров в испытательной технике/ Датчики и системы- № 11, 2010.- С 11-16.