КАСКАДНЫЙ БАРАБАННЫЙ СМЕСИТЕЛЬ НЕПРЕРЫВНОГО ДЕЙСТВИЯ ДЛЯ ПРИГОТОВЛЕНИЯ ФОРМОВОЧНЫХ СМЕСЕЙ

А. С. Григор, В. А. Марков

Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Россия

Известно достаточно большое количество конструктивно разнообразных смесителей для приготовления формовочных смесей. Наиболее широкое распространение в литейных цехах получили катковые смесители, представляющие собой нормальные смешивающие бегуны периодического действия, выполненный в виде неподвижной чаши с центральным вертикальным валом, связанным с приводом. Внутри корпуса расположены рабочие органы, выполненные в виде двух гладких катков и плужков. Катки установлены в чаше с возможностью сложного движения относительно ее днища по слою смеси, при этом катками описываются круги вокруг центрального вертикального вала и в то же время они вращаются вокруг собственной оси. Плужки предназначены для направления смешиваемого материала под катки. Смешивающее действие бегунов сводится к давлению катков на смесь, скольжению катков относительно днища чаши и к дополнительному перемешиванию смеси плужками. Наезжая на смесь, находящуюся на дне чаши, катки своим весом давят на нее, смесь деформируется и частично выжимается из-под катков вперед и в стороны.

Недостатком смесителя является низкая эффективность перемешивания вследствие низкой степени механоактивации и дезагрегации оборотной смеси, так как организованный поток смеси перемещается рабочими органами в горизонтальной плоскости, при этом сила веса смеси остается пассивной и на ее преодоление требуются значительные энергозатраты. Кроме того, продолжительность смешивания одного замеса в нормальных смешивающих бегунах, включая время загрузки дозаторами и разгрузки замеса, достаточно велика и составляет для единой формовочной смеси 3 – 5 мин.

Для повышения эффективности перемешивания вследствие обеспечения результативной дезагрегации и механоактивации компонентов оборотной смеси в процессе приготовления высокопрочных формовочных смесей и достижения требуемой технологической готовности формовочной смеси предлагается использовать каскадный барабанный смеситель непрерывного действия [1].

Каскадный барабанный смеситель непрерывного действия содержит: горизонтальный цилиндрический вращающийся на опорных катках, связанных с приводом, корпус, внутри которого размещены рабочие органы, цилиндрический корпус выполнен в виде двух секций с самостоятельными приводами имеющих возможность вращения с разными угловыми скоростями и установленных соосно на единой раме. Первая секция выполнена меньшим диаметром с разгрузочными отверстиями, входящими во вторую секцию. Рабочие органы, установленные в первой секции, выполнены в виде несвязанных стержнейкатков, а рабочие органы, установленные в во второй секции, выполнены в виде ряда катков-плужков, шарнирно закрепленных с помощью рычагов на горизонтальной оси.

Повышение эффективности перемешивания объясняется разделением корпуса смесителя на две секции, оборудованные отдельными приводами, с разными рабочими органами. В первой секции обеспечивается дезагрегация и механоактивация компонентов оборотной смеси за счет движения потока смеси в вертикальной плоскости в связи, с чем сила веса смеси становится активной силой процесса смесеприготовления и более тесного контакта зерен смеси и рабочих органов смесителя, а во второй секции осуществляется основной процесс смесеприготовления для достижения требуемой технологической готовности формовочной смеси.

Каскадный барабанный смеситель непрерывного действия для приготовления формовочных смесей содержит горизонтальный цилиндрический корпус, выполненный в виде двух секций 1 и 2 (рисунок 1), вращающихся на опорных катках 3, установленных соосно на единой раме 4. Секция 1 выполне-

на меньшим диаметром, чем секция 2, ее торец со стороны загрузки корпуса закрыт конической крышкой 5, а с противоположной стороны имеет щелевидные загрузочные отверстия 6, входящие в смежный торец секции 2.

Внутри секции 1 установлены несвязанные рабочие органы, выполненные в виде несвязанных стержней-катков 7, а внутри секции 2 установлен ряд рабочих органов, выполненных в виде катков-плужков с кине-

матической связью, которые шарнирно закреплены на горизонтальной продольной оси 8.

Каждый кронштейн 9 плужков 10 снабжен дополнительным плечом 11, шарнирно связанным с рычагом 12 катка 13 и расположенным под углом α к кронштейну 9. Угол α может изменяться в зависимости от толщины слоя смеси под катком 13.

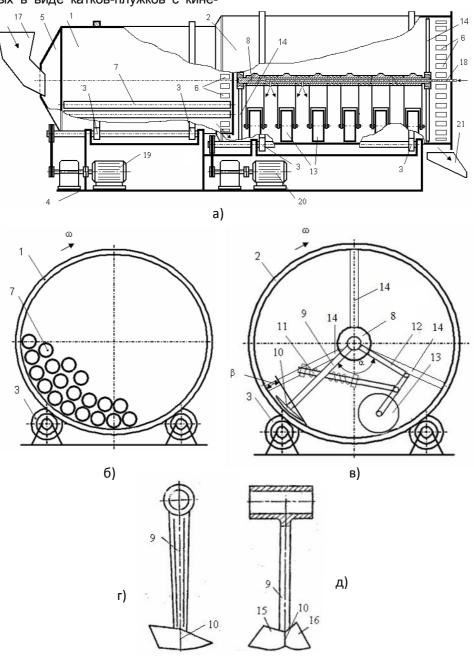


Рисунок 1 — Каскадный барабанный смеситель непрерывного действия: а) общий вид (фронтальный разрез), б) поперечный разрез первой секции, в) поперечный разрез второй секции, г) фронтальный вид плужка, д) профильный вид плужка.

КАСКАДНЫЙ БАРАБАННЫЙ СМЕСИТЕЛЬ НЕПРЕРЫВНОГО ДЕЙСТВИЯ ДЛЯ ПРИГОТОВЛЕНИЯ ФОРМОВОЧНЫХ СМЕСЕЙ

Катки 13 установлены на оси 8 по длине секции 2 с шагом, равным их ширине. Ось 8 секции 2 закреплена на распорных спицах 14, расположенных непосредственно внутри этой секции.

Плужки 10 выполнены из двух пластин 15 и 16, которые в плане образуют угол для перемещения смеси вдоль секции 2. Пластина 15, обращенная к разгрузочным отверстиям 6 секции 1, выполнена в 1,5 - 2 раза больше смежной пластины 16. При этом суммарная площадь всех плужков 10 равна внутренней длине секции 2. Поверхности пластин 15 и 16 плужка 10 образуют с внутренней поверхностью секции 2 угол резания β. Для исключения налипания смеси на поверхность плужка 10 величина угла резания β находится в пределах 15 -25°.

В секции 1, в окне конической крышки 5 установлен вибролоток 17 для подачи сухих компонентов. Внутри оси 8 установлен трубопровод 18 для подачи жидких компонентов в секцию 2.

Являющиеся приводом самостоятельные приводные элементы секций 1 и 2 выполнены в виде электродвигателей 19 и 20 соответственно. Опорные катки 3 связаны с электродвигателями 19 и 20. Поэтому секции 1 и 2 имеют возможность вращения с разными угловыми скоростями.

Секция 2 со стороны выполненных в ее торце для выхода готовой формовочной смеси щелевидных загрузочных отверстий 6 оборудована разгрузочным устройством 21.

Каскадный барабанный смеситель непрерывного действия для приготовления формовочных смесей работает следующим образом.

После одновременного включения электродвигателей 19 и 20 производится подача сухих компонентов вибролотком 17. Сухие компоненты смеси попадают в секцию 1 и между перемешиваются движущимися стержнями-катками 7, где происходит их интенсивное перетирание и перемешивание за счет большого объема смеси, одновременно находящегося под действием стержнейкатков 7. При этом в процессе перетирания элементарного объема смеси участвуют три поверхности, а именно поверхности двух рядом расположенных стержней-катков 7 и внутренняя поверхность секции 1, что обеспечивает эффективную дезагрегацию и механоактивацию компонентов оборотной смеси.

Объемы смеси, попадающие в зону действия стержней-катков 7, в которой расположены разгрузочные отверстия 6, под действием центробежной силы и давления стержней-катков 7 пересыпаются через разгрузочные отверстия 6 небольшими порциями, размеры которых зависят от ширины разгрузочного отверстия 6 и диаметра стержнякатка 7.

При выходе из вращающейся секции 1 компоненты смеси попадают в рабочее пространство вращающейся секции 2 и соответственно в зону действия катков 13. Одновременно по трубопроводу 18 подаются жидкие компоненты, и в зоне действия катков 13 происходит формирование сдвиговых деформаций в слое смеси перед катком 13, сжатие слоя смеси под катком 13, далее слой смеси под катком 13 срезается плужками 10; при этом пластина 15 срезает больше смеси, чем пластина 16. Срезанный слой смеси плужками 10 под действием собственного веса движется вниз и в пространстве между смежными катками 13 и за счет вращения корпуса секции 2 вновь попадает под катки 13. В процессе работы возможно увеличение слоя смеси под катком 13 (попадание кусочков стержней, сплески и т.п.), каток 13 имеет возможность увеличивать зазор относительно внутренней поверхности секции 2 за счет шарнирного крепления рычага 12 на оси 8. В процессе работы возможно переуплотнение смеси под катком 13, в результате чего увеличивается нагрузка на плужок 10, который может переместиться под действием слоя смеси. При перемещении плужка 10 и кронштейна 9 за счет тяги плеча 11 каток 13 также перемещается с увеличением зазора между внутренней поверхностью секции 2 и катком 13. что приводит к снижению давления на смесь и устраняет ее переуплотнение. Готовая смесь через разгрузочные отверстия 6 выводится из смесителя и через разгрузочное устройство 21 направляется для дальнейшего использования.

СПИСОК ЛИТЕРАТУРЫ

1. Патент № 97952 Российская Федерация, МПК В 22 С 5/18. Каскадный барабанный смеситель непрерывного действия для приготовления формовочный смесей [Текст] / В.А. Марков.(RU), А.С. Григор.(RU), [и др.]; заявитель и патентообладатель АлтГТУ им. И.И. Ползунова.(RU). — опубликовано 27.09.10, бюл. № 27. — 2с.