ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ МОНОТОННОГО ПРОЦЕССА ЗАПОЛНЕНИЯ ПОЛОСТИ ШТАМПА ПРИ ЗАКРЫТОЙ ШТАМПОВКЕ ПОКОВОК ИЗ ДЛИННОМЕРНЫХ ЗАГОТОВОК

М. И. Поксеваткин, К. Ю. Дунаев

Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Россия

С положением о монотонности протекания процесса пластической деформации связано представление об оптимальном формоизменении металла.

Условия монотонного протекания процесса деформации сформулированы Г.А. Смирновым-Аляевым работе [1]:

- 1 совпадение главных осей скоростей деформации с одними и теме же материальными частицами волокон металла;
- 2 неизменность за весь процесс вида малой деформации при переходе из предшествующей стадии в текущую.

В этом случае, если известны направления главных осей напряженного состояния, то можно установить непосредственно связь напряжений с компонентами результативной (логарифмической) деформации, так как из теории пластичности известно допущение: разности главных напряжений пропорциональны соответствующим по индексам разностям главных компонентов скоростей деформации [1]:

$$\frac{2 \cdot \sigma_2 - \sigma_1 - \sigma_3}{\sigma_1 - \sigma_2} = \frac{2 \cdot \xi_2 - \xi_1 - \xi_3}{\xi_1 - \xi_3}, \quad (1)$$

где σ_1 , σ_2 и σ_3 – главные напряжения; ξ_1 , ξ_2 и ξ_3 – главные компоненты скоростей деформации.

А из второго условия монотонности процесса вытекает: главные компоненты результативной (логарифмической) деформации должны быть пропорциональны соответствующим компонентам скоростей деформации, т.е.

$$\frac{\mathcal{E}_1}{\xi_1} = \frac{\mathcal{E}_2}{\xi_2} = \frac{\mathcal{E}_3}{\xi_3} \tag{2}$$

где $^{\mathcal{E}_1}$, $^{\mathcal{E}_2}$ и $^{\mathcal{E}_3}$ – главные компоненты результативной деформации.

Согласно способу штамповки стержневых заготовок [2] в первой стадии процесса заполнения полости штампа при свободной высадке пуансоном 1 нагретой до ковочной

температуры части заготовки 2 в матрице 3 при осесимметричной деформации наблюдается монотонное протекание процесса в очаге деформации 4 (рисунок 1).

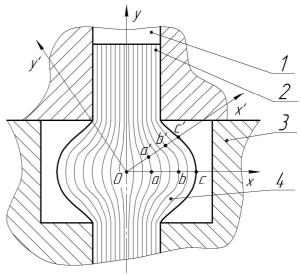


Рисунок 1 — Схема свободной высадки длинномерной заготовки: 1 — пуансон; 2 — заготовка; 3 — матрица; 4 — очаг деформации

Действительно, материальные точки а, b, c, ... (элементарные объемы волокон металла), расположенные в данный момент деформации на прямой, перпендикулярной меридианальному сечению осесимметричного очага деформации, должны располагаться на этой прямой и в предшествующие и в последующие моменты времени, а материальные точки a', b', c', ..., расположенные на произвольных нормалях к свободной поверхности очага деформации, также должны находится на этих нормалях и в другие моменты времени (рис. 1).

Во второй стадии при заполнении полости штампа посредством последовательной подачи металла в очаг деформации [2], характеризуемый определенным девиатором

напряжений, видами напряженного ($^{\mu_{\sigma}}$) и

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ МОНОТОННОГО ПРОЦЕССА ЗАПОЛНЕНИЯ ПОЛОСТИ ШТАМПА ПРИ ЗАКРЫТОЙ ШТАМПОВКЕ ПОКОВОК ИЗ ДЛИННОМЕРНЫХ ЗАГОТОВОК

деформированного (μ_{ε}) состояний, решающее значение имеет величина сопротивления

деформации ($^{\sigma_{cm}}$) металла длинномерной заготовки, поступающего в очаг деформации. Эта величина должна быть равна величине

сопротивления деформации ($^{\sigma_{o^{\eta}}}$) срединных объемов металла очага деформации, т.е.

$$\sigma_{cm} = \sigma_{oq} \,. \tag{3}$$

Сопротивление деформации ($^{\sigma_{cm}}$) металла заготовки в момент подачи его в полость штампа есть функция температуры (t , $^{\circ}$ C) и времени ($^{\tau}$, c):

$$\sigma_{cm} = f_1(t,\tau) \tag{4}$$

Согласно закону Курнакова Н.С. температурную зависимость сопротивления деформации ($^{\sigma_{cm}}$) описывают показательной функцией [3]:

$$\sigma_{et} = \sigma_{eth} \cdot e^{\alpha(t_n - t)}, \tag{5}$$

где σ_{st} и σ_{sth} – сопротивления деформации (предел прочности) металла соответственно в текущий и начальный моменты времени, МПа;

 α — температурный коэффициент ; для одно- и многофазных систем α = 0,0085, для твердых сплавов α = 0,008÷0,012;

t и $t_{_{^{\prime\prime}}}$ – температура металла соответственно в текущий и начальный моменты времени, °C.

Формулу (5) обычно выражают уравнением [3]:

$$\sigma_{\scriptscriptstyle et} = \sigma_{\scriptscriptstyle eth} \cdot e^m = \sigma_{\scriptscriptstyle eth} \cdot (1 + m + \frac{m^2}{2})$$
, (6) где $m = \alpha(t_{\scriptscriptstyle H} - t)$.

Однако, более точные результаты расчетов можно получить, если соотношение термомеханических параметров (6) аппроксимировать параболической зависимостью:

$$\sigma_{st} = \sigma_{stn} \cdot (1 + \frac{m}{3})^2 \tag{7}$$

Напряжение течения ($^{\sigma_{o^{q}}}$) в очаге деформации зависит от степени ($^{\mathcal{E}}$) и скорости ($^{\mathcal{E}}$) деформации, а также от температуры деформируемого металл (t , $^{\circ}$ C) в различные моменты времени ($^{\tau}$, $^{\circ}$ C):

$$\sigma_{ou} = f_2(\varepsilon, \xi, t, \tau) \tag{8}$$

При штамповке на горизонтальноштамповочно машине усилие (P) высадки рассчитывают по формуле:

$$P = k \cdot \sigma_{st} \cdot f_n \tag{9}$$

где k – коэффициент, зависящий от соотношения высоты утолщения $\binom{H_{\varepsilon}}{}$ к диаметру $\binom{D}{}$ заготовки при различных формах утолщений, определяется по графику [4];

 f_n – площадь проекции поковки в плане, мм 2 .

Для практических расчетов при высадке утолщений простой формы коэффициент k удобнее определять по соотношению:

$$k = 2.2 \cdot \frac{D}{H_{c}} \tag{10}$$

Введя допущение, что среднее напряже-

ние течения ($^{\sigma_{o^{u}}}$) в очаге деформации равно давлению на контакте с инструментом, получим

$$\sigma_{ou} = 2.2 \cdot \sigma_{et} \cdot \frac{D}{H_z} \tag{11}$$

Математическая модель управления монотонным процессов заполнения полости штампа включает вышеприведенные соотношения и зависимости для определения термомеханических параметров штамповки с варьированием температуры нагрева длинномерной заготовки и скорости ее подачи в полость штампа соответственно конкретным условиям формирования поковки в очаге деформации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Смирнов-Аляев Г.А. Механические основы пластической обработки металлов. М.: Машиностроение. 1968. 272 с.
- 2. Патент №2365459РФ. Способ изготовления изделий из длинномерных заготовок. Поксеваткин М.И., Овчаров Г.А., Поксеваткин Д.М., Дунаев К.Ю. и др. Опубл. бюл. №24.2009.
- 3. Губкин С.И. Пластическая деформация металлов. Т.2. М.: Металлургиздат. 1960. 416 с.
- 4. Ковка и штамповка. Справочник. Т.2 под ред. Е.И. Семенова. М.: Машиностроение, 1986, 592 с.