ИССЛЕДОВАНИЕ ПРОЧНОСТНЫХ СВОЙСТВ СПЛАВА Ni₃Al МЕТОДОМ НАНОИНДЕНТИРОВАНИЯ

Е. А. Дудник, С. А. Черненок, Д. В. Дудник

Рубцовский индустриальный институт (филиал) ГОУ ВПО «Алтайский государственный технический университет им. И. И. Ползунова» г. Рубцовск

Фундаментальные исследования закономерностей локального деформирования на эволюцию планарных дефектов в упорядочивающихся сплавах и интерметаллидах и их влияние на уникальные прочностные свойства, начато давно и вызывает интерес многих исследователей и сейчас [1-3]. Известно, что основные механизмы структурных превращений связаны с самоорганизацией антифазных границ. С развитием нанотехнологий получения новых материалов важность исследования влияния структурных дефектов, таких как антифазные границы, на прочностные свойства сплава, возрастает. Полученные результаты исследований позволили бы целенаправленно создавать технологию получения высокопрочных и пластичных материалов с заданным комплексом свойств. Метод наноиндентирования, использующий высокоточное локальное силовое воздействие на материал и одновременную регистрацию деформационных откликов с нанометровым расширением, является перспективным [4]. Использование компьютерного моделирования, широко применяющегося в этой области, позволило бы дополнить реальный эксперимент и изучить многие процессы, проходящие на наноуровне [5].

Целью данной работы является проведение компьютерного эксперимента методом молекулярной динамики, предназначенного для исследования структурных превращений в области локальной деформации при проникновении наноиндентора в сплав Ni₃Al, содержащий антифазные границы.

Методика проведения эксперимента

Процесс компьютерного моделирования атомной системы состоит, как правило, из трех этапов: инициализация, достижение равновесия и расчет характеристик задачи [6].

На первом этапе инициализируется физическая модель эксперимента. В качестве объекта исследования взят трехмерный модельный сплав Ni₃Al. Координаты атомов определяются положением узлов кубической ГЦК решетки, соответствующей сверхструктуре L1₂. На границах расчетного блока, соответствующих направлению <010>, наложены свободные граничные условия, а в направлении <100> и <001> – периодические. Размер расчетного блока 24х24х24 атомов. Наноиндентор представляет собой четырехгранную пирамиду Виккерса с полууглом при вершине 68°. Массу наноиндентора принимали равной 500 массам невзаимодействующих атомов, такое соотношение выбирали из условий качественного соответствия процессов внедрения наноиндентора в вещество в модели и реальных экспериментах.

В сплав вводятся три вида антифазных границ в плоскости залегания (010): сдвиговые антифазные границы, не изменяющие концентрацию компонентов атомов на границе, и две неконсервативные антифазные границы, изменяющие концентрацию атомов Ni и AI в плоскости залегания границ. Под вектором антифазности понимается вектор смещения частей кристалла относительно друг друга при образовании антифазной границы. Направление вектора антифазности сдвиговой границы совпадает с плоскостью залегания границы, в случае неконсервативных границ направление вектора антифазности перпендикулярно плоскости залегания границ [7].

На втором этапе моделирования для получения равновесного состояния модельного сплава используется метод молекулярной динамики.

Взаимодействие между атомами задано с помощью парного потенциала Морзе [8]:

$$\varphi(r) = D\beta e^{-\alpha r} \left(\beta e^{-\alpha r} - 2\right), \quad (1)$$

где r – расстояние между атомами, α_{AA} = 1,36605 Å, α_{AB} = 1,16808 Å, α_{BB} = 1,02658 Å, β_{AA} = 41,0494 Å, β_{AB} = 27,126 Å, β_{BB} = 27,4979 Å, D_{AA} = 0,470513 Å, D_{AB} = 0,495026 Å, D_{BB} = 0,318004 Å.

Смещения атомов находятся с помощью уравнений движения Ньютона, для которых решается задача Коши. В начальный момент времени задаются начальные координаты атомов и их скорости. Для системы дифференциальных уравнений с заданными начальными и граничными условиями числено находится частное решение модифицированным методом Эйлера. Температура определяется через среднеквадратичную скорость атомов по распределению Максвелла-Больцмана. Перемещение наноиндентора определяли по формуле [6]:

$$\mathcal{A}h = \left(V + \left(P - F_{ax}\right) \cdot \frac{\mathcal{A}t}{M}\right) \cdot \mathcal{A}t, \qquad (2)$$

где P – нагрузка, F_{ax} – сила, действующая со стороны модельной области, V – скорость наноиндентора, M – масса наноиндентора. Силу F_{ax} находили как проекцию суммы всех сил, действующих со стороны атомов на наноиндентор за промежуток времени dt.

Напряжения атомов рассчитываются по формуле

$$\partial_i^{\delta_{\theta}} = \frac{1}{\varPi} \cdot \sum_i \frac{1}{r_{ij}} f_{ij} \cdot r_{ij}^{\alpha} \cdot r_{ij}^{\theta} , \qquad (3)$$

где а, β соответствуют декартовым координатам, Ω_i – локальный объем i-го атома, f_{ij} – сила взаимодействия между i-ми и j-ми атомами.

Локальный объем находится следующим образом:

$$\underline{M}_{p} = \frac{4 \cdot p}{3} \cdot a_{i}^{3},$$
 где $a_{i} = \frac{\sum_{j} \frac{1}{r_{ij}}}{\sum_{i} \frac{2}{r_{ii}^{2}}}.$ (4)

В качестве расчетных характеристик были выбраны величины изменения энергии атомов, числа межатомных связей и деформации, нормальное σ_x и касательное σ_y напряжение, составляющие P-h – диаграммы (нагрузка и глубина проникновения).

Результаты и их обсуждения

В результате моделирования процесса наноиндентирования в модельном сплаве Ni₃AI с внесением антифазных границ были исследованы области изменения энергии вблизи наноиндентора при одинаковой глубине проникновения (8,5Å). Исследование таких областей показало, что атомы с повышенной энергией формируются непосредственно под наноиндентором в результате механизма структурных превращений в зоне воздействия наноиндентора. Часть атомов, которые находятся под наноиндентором, выталкиваются из под него и перемещаются на поверхность, образуя «навалы». Энергетические изменения вблизи неконсервативных антифазных границ с преобладанием Ni не столь значительны, чем в случае неконсервативных антифазных границ с преобладанием АІ и сдвиговых антифазных границ. Стоит отметить, что с увеличением глубины вдавливания область локальных энергетических превращений под индентором расширяется, особенно вблизи неконсервативных антифазных границ с преобладанием AI, площадь навалов увеличивается, при снятии нагрузки образовавшиеся навалы частично сохраняются, образуя отпечаток. При этом в основной же части кристалла расположение атомов упорядочено.

Исследование таких областей показало, что атомы с повышенной энергией формируются непосредственно под наноиндентором в результате механизма структурных превращений в зоне воздействия наноиндентора. Энергетические изменения вблизи неконсервативных антифазных границ с преобладанием Ni не столь значительны, чем в случае неконсервативных антифазных границ с преобладанием AI и сдвиговых антифазных границ. Стоит отметить, что с увеличением глубины вдавливания область локальных энергетических превращений под индентором расширяется, особенно вблизи неконсервативных антифазных границ с преобладанием AI, площадь отпечатка увеличивается, при снятии нагрузки отпечаток частично сохраняется. При этом в основной же части кристалла расположение атомов упорядочено.

Области изменения числа межатомных связей в процессе наноиндентирования в модельном сплаве Ni₃AI с внесением антифазных границ представлены на рисунке 1.

Рисунок 1 – Визуализация атомов в сплаве Ni₃AI, имеющих число межатомных связей, отличное от идеального случая, в зависимости от типа внесенной антифазной границы:

ПОЛЗУНОВСКИЙ АЛЬМАНАХ №2 2011

 а – неконсервативная с преобладанием Ni,
б – неконсервативная с преобладанием Al,
в – сдвиговая (светлым цветом обозначены атомы с большим числом межатомных связей, темным – с меньшим числом межатомных связей; 1 – плоскость <010>,

2 – плоскость <100>)

Из рисунка 1 (направление <010>) видно, что наблюдается появление многорядной четырехлучевой дислокационной розетки, лучи которой перпендикулярны граням наноиндентора, а ширина и протяженность лучей увеличивается с ростом глубины погружения наноиндентора. Как видно из рисунка 2, *a*, область локальных превращений под индентором в случае неконсервативных антифазных границ с преобладанием Ni меньше, чем в случае других антифазных границ.

В результате наноиндентирования в сплаве Ni₃Al без дефектов и с внесенными в сплав антифазными границами получены P-hдиаграммы в режиме «нагрузка-разгрузка», состоящие из двух ветвей: нагрузочной и разгрузочной (рисунок 2).

антифазных границ

Кривая нагружения характеризует сопротивление материала внедрению жесткого индентора и отражает как упругие, так и пластические свойства исследуемого материала, горизонтальное направление кривой говорит о преобладании механизмов упругой деформации, вертикальное – о пластических. Детальный анализ кривой нагружения (рисунок 2) показал, что упругий отклик в кристалле без антифазных границ наблюдается на глубине до 6 Å, а при внесении антифазных границ до 4 Å, при большей глубине преобладают механизмы пластической деформации. Глубина погружения наноиндентора в случае неконсервативных антифазных границ с преобладанием Ni и сдвиговых антифазных гра-

ПОЛЗУНОВСКИЙ АЛЬМАНАХ №2 2011

ниц оказалась меньше, чем в случае внесения неконсервативных антифазных границ с преобладанием AI.

Рассчитаны зависимости нормального и касательного напряжения от времени эксперимента в сплаве Ni₃AI с внесением в сплав антифазных границ, которые представлены на рисунке 3.

Рисунок 3 – Зависимость касательного (а) и нормального (б) напряжения от времени (1 – упорядоченный сплав, 2 – сплав с неконсервативной границей с преобладанием Ni, 3 – сплав с неконсервативной границей с преобладанием AI, 4 – сплав со сдвиговой антифазной границей)

Как видно из рисунка 3, наличие антифазных границ в зоне воздействия индентора приводит к увеличению напряжения по всем направлениям. Отмечено значительное увеличение напряжения σ_x в случае сдвиговых антифазных границ, что совпадает с плоскостью залегания границы. При внесении неконсервативных антифазных границ, более высокое напряжение σ_y наблюдается в направлении, перпендикулярном плоскости залегания неконсервативной антифазной границы, совпадающем с вектором антифазности. Полученные напряжения хорошо коррелируют с изображениями атомов на границах, представленных на рисунке 1.

Был проведен анализ области деформации сплава в процессе наноиндентирования в зависимости от типа и угла наклона антифазной границы. Все конфигурации антифазных границ были внесены на расстоянии

18 Å от индентора, где расстояние равно длине перпендикуляра, опущенного от конца острия индентора к плоскости залегания антифазной границы. В результате серии экспериментов было выявлено, что внесение антифазных границ приводит к уменьшению области локальных преврашений в кристалле. При внесении антифазных границ с углом наклона в пределах от 0 до 45 градусов, деформация характеризуется меньшей распространенностью, и как правило через границу не проникает. При угле наклона антифазной границы более 45 градусов, степень локальной деформации увеличивается за счет более близкого контакта антифазной границы с зоной, примыкающей к наноиндентору. Сдвиговая антифазная граница в большей степени препятствует проникновению локальных смещений, в отличие от неконсервативной. При удаленности индентора от антифазных границ на расстояние менее 10 Å, происходит разрушение границы и проникновение области деформации через границу.

В ходе экспериментов были получены зависимости нагрузки наноиндентора от глубины проникновения в сплаве Ni₃AI при различных температурах, которые представлены на рисунке 4.

Рисунок 4 – Зависимость приложенной нагрузки от глубины погружения наноиндентора в сплаве Ni₃AI при различной температуре (1 – 0K, 2 – 50K, 3 – 100K)

С ростом температуры область некристалличности увеличивается, наблюдается образование дефектов по всей площади сплава. Глубина проникновения с увеличением температуры до 100К уменьшилась.

Поскольку степень упорядоченности атомов влияет на практически все физикомеханические свойства сплава [9-10], были проведены эксперименты по наноиндентированию для сплавов различной упорядоченности атомов. Построены P-h диаграммы зависимости приложенной нагрузки от глубины проникновения для сплавов различной упорядоченности атомов (рисунок 5).

Рисунок 5 – Зависимость приложенной нагрузки от глубины погружения наноиндентора в сплаве Ni₃AI при упорядоченности (1) и разупорядоченности (2) атомов

В упорядоченном состоянии наблюдался упругий отклик вплоть до проникновения индентора на глубину более 4 Å, кривая 1 растет медленно, затем доля механизмов пластической деформации увеличивается. В режиме разгрузки наблюдается упругое восстановление отпечатка. Кривая 2, соответствующая неупорядоченному состоянию, характеризуется более упругим отпечатком и меньшей глубиной проникновения.

Выводы

В процессе наноиндентирования происходит образование областей структурных превращений вокруг наноиндентора, с увеличением глубины вдавливания наблюдается распространение областей некристалличности. При разгрузке сплав частично восстанавливает правильное расположение атомов.

Сдвиговые и неконсервативные антифазные границы с преобладанием Ni вблизи зоны воздействия наноиндентора приводят к меньшим энергетическим и структурным превращениям вблизи границы, со смещением атомов вдоль плоскости залегания границ, в отличие от неконсервативных антифазных границ с преобладанием AI, для которых наблюдается наибольшая зона смещений атомов в процессе наноиндентирования сплава.

Направление роста напряжения и области распространения структурных превращений в кристалле совпадает с направлением вектора антифазности границ.

Внесение антифазных границ, как неконсервативных, так и сдвиговых, при различной ориентации приводит к уменьшению глубины проникновения наноиндентора и упрочнению сплава. Консервативные антифазные границы в большей степени препятствуют проникновению локальных превращений через границу, чем неконсервативные антифазные границы. При этом, расположение антифазной границы непосредственно на близком расстоянии к наноиндентору приводит к ее разрушению и проникновению области деформации через границу.

Анализ кривой нагружения – разгрузки в процессе наноиндентирования для сплава показал уменьшение глубины проникновения наноиндентора с ростом температуры.

В сплаве с разупорядоченным расположением атомов глубина погружения наноиндентора оказалась меньше, чем в сплаве с упорядоченным расположением.

Сравнительный анализ полученных результатов моделирования с результатами других авторов [1-10] показал непротиворечивость результатов экспериментальных исследований.

СПИСОК ЛИТЕРАТУРЫ

- Попов, Л. Е. Деформационное упрочнение упорядоченных сплавов / Л. Е. Попов, Н. А. Конева, И. В. Терешко. – М. : Металлургия, 1979. – 255 с.
- Козлов, Э. В. Анализ влияния антифазных границ на термодинамические характеристики превращения порядок-беспорядок / Э. В. Козлов, А. Е. Гинзбург // Изв. вузов. Физика. 1971. № 3. с. 155-157.
- Гурова, Н. М. Компьютерное моделирование термоактивируемых превращений, протекающих на антифазных и межфазных границах :

дис. ... канд. ф.-м. наук / Н. М. Гурова. – Барнаул, 2000.

- Определение комплекса механических свойств материалов в нанообъемах методами наноиндентирования / Ю. И. Головин, В. И. Иволгин, В. В. Коренков, Н. В. Коренкова, Р. И. Рябко // Конденсированный среды и межфазные границы. – 2001. – Т. 3, № 2. – с. 122-135.
- 5. Meyer M. A., Mishra A., Benson D. J. Mechanical properties of nanocrystalline materials // Progress in Materials Science, 2006, v. 51, p. 427-556.
- Мачихин, В. Б. Двухмерная модель структуры материала в процессе наноиндентирования / В. Б. Мачихин, А. А. Арзамасцев // Электронный журнал «Исследовано в России».
- Хеерман, Д. В. Методы компьютерного эксперимента в теоретической физике: Пер. с англ. / под ред. С. А. Ахманова. – М. : Наука, 1990. – 176 с.
- 8. Старостенков, М. Д. Система планарных дефектов в сверхструктурах : препринт / М. Д. Старостенков, С. В. Дмитриев, С. М. Волкова. – Барнаул : АлтГТУ, 1993. – №2. – 41 с.
- 9. Дудник, Е. А. Исследование параметров порядка вблизи антифазных границ в сплаве Cu₃Au / Е. А. Дудник, М. Д. Старостенков // Известия РАН. Серия физическая, 2007. Т. 71, № 5. – с. 661-665.
- Старостенков, М. Д. Исследование микроструктуры антифазных границ в двумерном упорядоченном сплаве типа Ni₃Al / М. Д. Старостенков, Е. А. Дудник, В. Г. Дудник // Известия РАН. Серия физическая, 2004. Т.68, №5. – с. 639-641.