СИСТЕМА КАРТОГРАФИРОВАНИЯ УРОЖАЙНОСТИ С ПОМОЩЬЮ НАВИГАТОРА GPS

П. А. Литвинцев, В. С. Афонин

Алтайский государственный технический университет им. И. И. Ползунова Алтайский научно-исследовательский институт сельского хозяйства г. Барнаул

Одним из важнейших направлений интенсификации и экологизации производства сельскохозяйственной продукции, является «точное земледелие», основанное на дифференцированном подходе к свойствам почвы и состоянию посевов отдельно взятого поля. Хотя необходимость учета внутрипольной пестроты почвенного плодородия была известна давно, только развитие современной науки и техники позволило на практике применить принципы точного земледелия, прежде всего в области агрохимии. В настоящее время технологии точного земледелия основываются на применении эффективных методов картографирования внутрипольной неоднородности почвенного покрова, компьютерных программных средств для обработки информационных потоков, электронизированной высокопроизводительной техники для внесения удобрений и пестицидов [1]. Дальнейшие исследования в этой области и совершенствование технологических приемов должны расширить масштабы внедрения точного земледелия в мире и, особенно, в нашей стране, и Алтайском крае в

Термин «точное земледелие» пришел к нам из-за рубежа как перевод с английского «Precision agriculture» [2]. Суть точного земледелия состоит в учете внутрипольной вариабельности плодородия почвы и применении агротехнологических методов, снижающих эту вариабельность и ее влияние на формирование урожайности сельскохозяйственных культур. О негативном влиянии неоднородности почвенного покрова на урожайность известно с глубокой древности. Еще римский сенатор Катон Старший (234-149 гг. до новой эры) в своём трактате «О земледелии», сохранившемся до наших дней, призывал бороться с «пестротой полей» [3]. В принципе, технологии точного земледелия отличаются от обычных только тем, что агроприемы осуществляются не в видимых границах полей, а по внутрипольным контурам плодородия, выделяемых тем или иным способом на электронных носителях бортовых компьютеров агрегатов и «считываемых» ими в процессе движения агрегатов по полю с использованием систем позиционирования (GPS и др.) [4].

В настоящее время существует или разрабатывается несколько способов картографирования: путем сеточного отбора почвенных проб по схематически выделенным элементарным участкам поля; на основе сканирования урожайности уборочными машинами, оборудованными соответствующей аппаратурой; с применением дистанционного зондирования полей околоземными космическими аппаратами (КА) и выделением на электронных картограммах сельскохозяйственных полей однородных областей, которые и используются в качестве элементарных участков для их агрохимического обследования; сканированием электропроводности почвы специальными кондуктометрическими устройствами; по данным горизонтальной съемки микро- и нанорельефа поверхности почвы [5]. По результатам агрохимического анализа почвенных проб во всех случаях методами ГИС-технологий составляются электронные агрохимические картограммы полей, которые служат для расчета дифференцированных доз удобрений, учитывающих внутрипольную вариабельность агрохимических показателей.

Целью работы является проектирование системы, производящей автоматический сбор информации для создания карт урожайности.

Наиболее простым и доступным методом определения почвенной неоднородности является учет урожайности сельскохозяйственных культур, когда само растение является индикатором показывающим уровень плодородия элементарного участка поля. В современных зарубежных комбайнах реализованы различные способы учета урожайности, основные из которых это объемный и массовый. Для реализации учета необходимо оснастить уборочную машину специальными приборами для измерения массы собранного урожая — датчиками урожайности. Эти приборы должны измерять массовый расход собираемого урожая в режиме реального времени, тем самым поставляя информацию поступления зерна в бункер комбайна во времени. Датчики урожайности, устанавливаемые на зерноуборочные комбайны, в сочетании с системами точного позиционирования (GPS-приемники) [6] позволяют оперативно, непосредственно в процессе уборки, получать информацию о массе и влажности зерна, убранного с данного участка поля.

После этого вся информация переносится на компьютер, где обрабатывается с помощью специального пакета программ. После обработки данных получают карты полей, где цветом обозначены вариации урожайности и влажности зерна (рисунок 1).

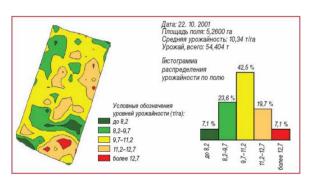


Рисунок 1 — Карта урожайности с сопроводительной информацией

Для автоматизации процесса переноса данных для дальнейшей обработки необходимо дополнить gps навигатор и датчики урожайности беспроводным интерфейсом и устройством управления этими элементами. На практике таким устройством служит gps трекер. Трекер содержит встроенный gsm модуль для беспроводной передачи информации, аналоговые и цифровые интерфейсы для подключения датчиков. Трекер собирает данные с подключенных датчиков и навигатора qps, и формирует сообщение заданного формата (большинство трекеров используют для передачи координат текстовый протокол NMEA) для его передачи с помощью беспроводного интерфейса GSM в сервер где информация о местоположении объекта и урожайности заносится в базу данных, в которой в дальнейшем будет храниться. Функции сервера может выполнять обычный персональный компьютер с выделенным каналом доступа в Интернет и «публичным ір-адресом». Описанная gsm-система сбора данных представлена на рисунке 2.

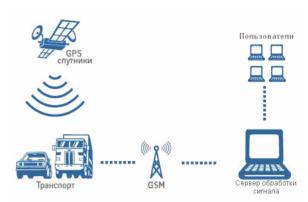


Рисунок 2 – GPS-трекер GlobalSat

Представленная система позволит организовать систему автоматического сбора навигационных данных и данных урожайности для создания электронных карт урожайности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Афанасьев Р.А. Агрохимическое обеспечение точного земледелия //Проблемы агрохимии и экологии. 2008, №3. С. 46-53.
- 2. Якушев В.П. На пути к точному земледелию. СПб.: Изд-во ПИЯФ РАН, –2002. 458 с.
- 3. Крупеников И.А. История почвоведения.- М.: Наука, -1981. - 327 с.
- 4. Афанасьев Р.А. Принципы адаптивного применения удобрений // Агрохимический вестник, 1998. -№ 4. -C.18-20.
- 5. Сычев. В.Г., Афанасьев Р.А., Личман Г.И., Марченко Н.М. Методика отбора почвенных проб по элементарным участкам поля в целях дифференцированного применения удобрений. М.: Издво ВНИИА, 2007. 36 с.
- 6. Леонтьев Б.К. GPS: Всё, что Вы хотели знать, но боялись спросить. М.: Бук-Пресс, 2006.