КОМПЬЮТЕРНОЕ СКВОЗНОЕ ПРОЕКТИРОВАНИЕ ПРИ РАЗРАБОТКЕ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ОТЛИВОК

И. В. Марширов, Ю. В. Козлова, Г. А. Мустафин, В. Г. Москалев

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул, Россия

Развитие информационных технологий, особенно систем инженерного анализа (Computer Aided Engineering, CAE), предоставило литейщикам новые возможности изготовления отливок и освоения принципиально новых способ построения литейной технологии гарантированного качества.

Суть новой технологии подготовки производства отливок - в создании сквозной системы, где на всем пути жизненного цикла изделия в общем информационном пространстве используется единая математическая модель детали, литой заготовки, заливаемой формы и модельного комплекта.

Процесс сквозного проектирования включает следующие этапы:

- 1. Разработка математических моделей детали, отливки и модельной оснастки в системе SolidWorks;
- 2. Конвертирование математической модели отливки из формата системы SolidWorks в формат IGES;
- 3. Разбиение математической модели отливки на конечные элементы в системе HyperMesh;
- 4. Конвертирование математической модели отливки из формата программыразбивщика на конечные элементы HyperMesh в формат системы моделирования литейных процессов «Полигон»;
- 5. Моделирование процессов заполнения формы металлом и затвердевания отливки в системе «Полигон»;
- 6. Автоматизированное проектирование модельной оснастки;
- 7. Разработка управляющей программы в PowerMILL для станка с ЧПУ для изготовления модельной оснастки;
- 8. Контроль отливки в системе PowerINSPECT.

При построении математических моделей отливки и оснастки используется ассоциативная связь между моделями для автоматизации проведения изменений на всей цепочке деталь – оснастка при проектировании в одной среде и исключения возможности несанкционированного изменения модели

(разграничение ответственности технолог/конструктор детали).

В представленной работе приведены результаты процесса разработки литейной технологии для отливки «Прижим нижний» (данная отливка изготавливается из стали 35Л литьем в песчано-глинистую форму). Для построения геометрической модели данной отливки использована CAD-система SolidWorks. Моделирование литейных процессов выполнялось посредством применения CAE-системы «Полигон».

Основными этапами выполнения работы являлись:

- построение геометрической модели детали;
- разработка геометрической модели отливки;
- расчет элементов литниково-питающей системы (ЛПС);
- моделирование усадочных процессов (образование макро- и микропористости), а также решение тепловой и гидродинамической задач в отливке;
- разработка геометрических моделей модельной оснастки и рабочих чертежей для изготовления отливок.

На первом этапе был выполнен предварительный расчет элементов литниковой системы, в т. ч. прибыль.

Предварительный расчет сечения питателей, шлакоуловителя, стояка и литниковой воронки проводили по общепринятым для стального литья методикам.

Расчет прибыли проводили по методу Й. Пржибыла.

На следующем этапе выполнено построение 3D модели отливки со всеми технологическими элементами ЛПС и прибылями.

Для решения гидродинамической задачи при моделировании в СКМ «Полигон» использовали модуль Эйлер-3D

В результате этого расчета появляется возможность моделировать процесс заполнения формы жидким металлом, а также получить начальное распределение температурных полей в отливке и форме (рисунок 1), которое может быть использовано при тепловых расчетах в модуле «Фурье», что значительно повышает достоверность расчетов.

Последующие этапы моделирования в модуле Фурье 3D с проведением последующей корректировки ЛПС (рисунок 2) позволили разработать технологию получения отливки «Нижний прижим» без дефектов усадочного происхождения.

Таким образом, применение СКМ «Полигон» позволяет оценить эффективность литниково-питающей системы еще на стадии разработки техпроцесса и выбрать наиболее оптимальный вариант для получения качественной отливки, не прибегая к дорогостоящему производственному опробованию.

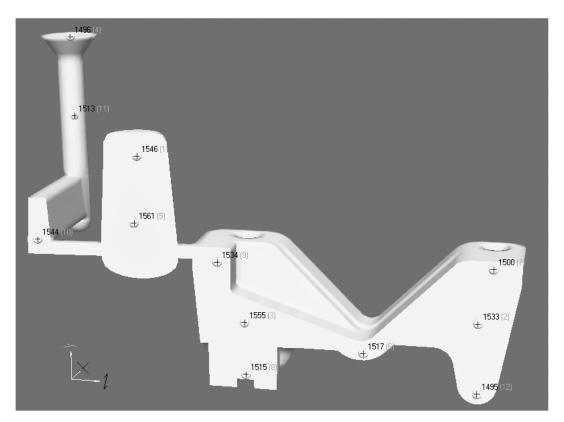


Рисунок 1 – Распределение температуры на момент полного заполнения расплавом формы

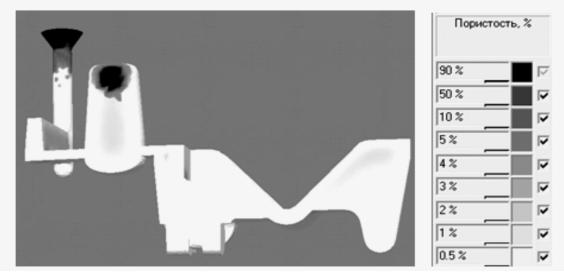


Рисунок 2 – Результаты моделирования усадочных процессов