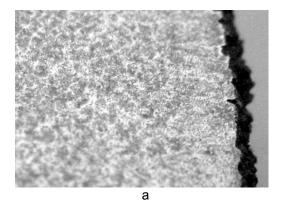
ТЕРМОЦИКЛИЧЕСКАЯ ОБРАБОТКА ЛИТЫХ СТАЛЕЙ ДЛЯ АВТОСЦЕПНЫХ УСТРОЙСТВ ГРУЗОВЫХ ВАГОНОВ

В.Я. Огневой, А.М. Гурьев, Г.Л. Огневая

Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Россия

Для изготовления вагонного литья широко применяется сталь 20ГЛ, которая согласно ГОСТ 22703-91 должна соответствовать следующему химическому составу: С - 0,17-0,25 %; Mn - 1.10-1.40 %; Si - 0.30-0.50 %; Cr, Ni, Си – не более 0.30 % каждый. Литые детали в обязательном порядке подвергаются термической обработке, в частности детали автосцепного устройства закалке в воде с температуры 920 ^ОС и последующему высокому отпуску при 600 °C с охлаждением на воздухе. Окончательная структура должна соответствовать сорбиту отпуска с твердостью 192-262 НВ. Вместе с деталями отливаются и проходят термическую обработку пробные бруски, из которых в последующем вырезаются образцы для проведения механических испытаний. Механические свойства должны быть: $\sigma_{0.2}$ = 450-500 Мпа; σ_B ≥ 560 МПа; δ ≥ 15 %; Ψ ≥ 30 % и ударная вязкость при температуре минус 60 $^{\circ}$ C – KCU $^{-60}$ не менее 25 Дж/см 2 . При не соответствии требованиям термическая обработка повторяется, но не более двух раз.


Жесткость требований не всегда позволяет получить качественную продукцию и поэтому авторы решили применить предвари-

тельную термоциклическую обработку с последующими закалкой и отпуском. Связано это с особенностями литой структуры данной стали, такими как наличием на поверхности литой детали дендритной структуры (рис. 1, a), а в сердцевине колоний феррито-перлитных зерен, окаймленных сеткой ферритных зерен.

Предложена следующая схема эксперимента (обозначения сохраняются и в последующем):

- 1 контрольная: нагрев до 920 $^{\circ}$ С, выдержка 30 мин., закалка в воду и последующий отпуск при 600 $^{\circ}$ С в течение 2 часов с охлаждением на воздухе.
- 2 TЦО из одного цикла нагрев до 920 $^{\circ}$ C с выдержкой 30 мин., перенос в печь с температурой 600 $^{\circ}$ C с выдержкой 10 мин. и последующая термическая обработка по режиму 1.
- 3 ТЦО из двух циклов: 920 $^{\circ}$ C-30 мин. \rightarrow 600 $^{\circ}$ C-10 мин. \rightarrow 920 $^{\circ}$ C-20 мин. \rightarrow 600 $^{\circ}$ C-10 мин. и последующая термическая обработка по режиму 1.

Из обработанных заготовок в ЦЗЛ РФ ОАО "AB3" изготавливались образцы и проводились механические испытания, результаты которых представлены в табл. 1.

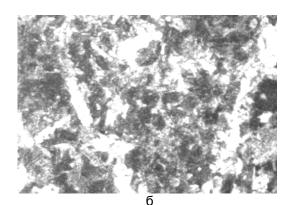


Рисунок 1 - Структура стали 20ГЛ в литом состоянии: a – макроструктура x7, б – микроструктура x100

Таблица 1 – Результаты испытаний литой стали 20ГЛ

	σ _{0,2} ,	$\sigma_{B_{c}}$	δ,	Ψ,	KCU ⁻⁶⁰ ,	
Режим	МΠа	МПа	%	%	Дж/см ²	HB
1	665	787	18,4	48,8	33,2	269
2	634	760	9,2	28,5	11,6	277
3	589	735	9,8	25,3	9,7	264

Примечание: на каждую точку испытывалось по 3 образца

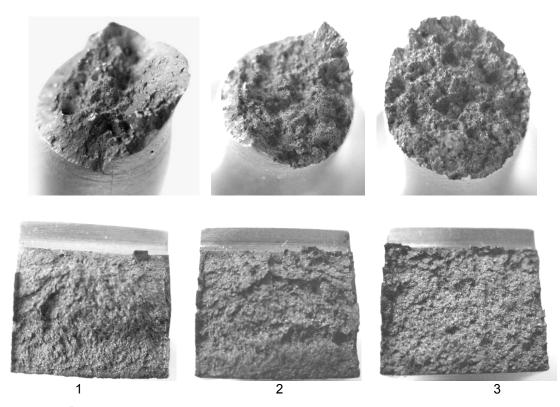


Рисунок 2 - Виды изломов: первый ряд после растяжения, второй ряд после испытаний на ударную вязкость при температуре минус $60\,^{\circ}\mathrm{C}$

Изучение результатов показало, что применение предварительной термоциклической обработки по предложенным режимам снижает пластичность и увеличивает хрупкость литой стали 20ГЛ при некотором уменьшении и прочностных характеристик. Очевидно это может

быть связано с каким-либо перераспределением элементов (возможно фосфора) по сетке ферритных зерен. Подтверждается это и видом изломов — изломы огрубляются, особенно при обработке по режиму 3. В микроструктуре каких-либо видимых изменений не отмечено.